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Vectors

Definition:
A vector is an ordered finite list of numbers (real or complex).

Notation:
Usually denoted by a letter symbol; stack the list of numbers in an ordered form.

For example, consider a vector of 4 real numbers given by

[ 1.1] —1.1
30.1 30.1

a=| & a=| s a=(-1.1, 30.1, 6.1, —2.7)
| —2.7 —2.7

Size of a vector: Number of elements the vector contains (also referred to as length or dimension).

We usually express vector b of size n as b € R" and call it n-vector.

Entry of a vector: b; - k-th entry of the vector b.  For example, as = 30.1 for the vector a defined above.

LUMS
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Vectors

Zero vector: A vector with all elements equal to zero.
denoted by 0 € R".

One vector: A vector with all elements equal to one.
denoted by 1 € R".

Unit vector: A standard unit vector is vector with all elements zero except one
element that is equal to one.

denoted by e; € R™ and is defined as

1 i=j
7: - : :67: .

k-Sparse vector: A vector with at-most k non-zero entries.

LUMS
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Geometric Interpretation

Zvector: 6 following diagram illustrates a vector v = E] in the R? plane:
Yy
3 / v
> L
O 2

Here, the vector v is represented geometrically by an arrow from the origin
O to the point (2,3) in the plane.

LUMS
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Examples of Vectors - Applications

Location

Displacement, Velocity, Acceleration

LUMS

A Not-for-Profit University



Examples of Vectors - Applications

Color
Each color is represented by 3-vector.

Quantities

An n-vector q can represent the amounts or quantities of n different resources or
products held (or produced, or required) by an entity such as a company.

For example, n-vector represents the quantity of n products stocked in a warehouse.

Values across a population
An n-vector can give the values of some quantity across a population of individuals or entities.

For example, an n-vector a can represent the blood pressure of a collection of n patients, with
aithe blood pressure of patient i, for i = 1, 2, ..., n.

LUMS
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Examples of Vectors - Applications

Image

Altitude: 217m Climate: BSh *C: 24.1 / °F: 75.5 mm: 607 / inch: 23.9 mm
200

Time series

12 -vector can represent the average monthly
temperature, rainfall, pressure etc of Lahore.

175
150

125

30-vector can represent the number of expected COVID -
19 patients in Pakistan cases over the next 30 days.

100

10 50

Other examples include exchange rate, audio, and, in fact,
any quantity that varies over time. ; .

LUMS
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Examples of Vectors - Applications

Audio 02}

0.1

Sound (Flute) versus time

8 second sound = 44100x8-vector

01|

02+

-0.3

-0.4

I I I 1 1 ! I
L 2 9 Time.45x 44100 v 8 & B ‘8"5

Feature or Attribute

In Machine Learning, classification is mostly carried out
collecting features or characteristics derived from the
object.

Such a vector is sometimes called a feature vector, and
(ts entries are called the features or attributes.

LUMS : Emotion Recognition
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Operations on Vectors

Additivity and Scaling

Additivity of Vectors: The sum of two vectors u,v € R” is obtained by
adding their corresponding components:

(u+v);=u;+v;, fori=12...,n.

Scaling of a Vector by a Scalar: A vector v € R" can be scaled by a
scalar a € R by multiplying each component of the vector by the scalar:

(av); = av;, fori=1,2,... n.

These operations are fundamental in vector algebra, allowing for the combi-
nation and modification of vectors in R".

LUMS
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Operations on Vectors

Linear Combination

A linear combination of vectors vi,va,...,vy € R™ is an expression
formed by multiplying each vector by a scalar and then adding the results.
Specifically, a linear combination of these vectors is given by:

y =cC1V1 + Ve + - + CiVE,

where c1,ca,...,c, € R are scalars called the coefficients of the linear combina-
tion.

The concept of a linear combination is fundamental in linear algebra, as it
is used to describe vector spaces, spans, and the solutions to systems of linear
equations.

LUMS
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Operations on Vectors

Linear Combination

Affine Combination: An affine combination of vectors vi,vo,..., vy € R”
is a linear combination where the sum of the coefficients is 1:

Yy =C1V1 + Ve + -+ + CEVE,

where c1,co,...,c; € R and
E C;, — 1.
i=1

Affine combinations generalize the concept of a linear combination by impos-
ing the constraint on the sum of the coefficients, which preserves the “affine
structure” of the space (i.e., translations and weighted averages).

LUMS
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Operations on Vectors

Linear Combination

Convex Combination: A conver combination is a special case of an affine
combination where all coefficients are non-negative:

Yy =cC1Vy +CaVy + -+ Cp Vi,

where c1,co,...,c > 0 and
E C;, — 1.
i=1

Convex combinations are used to describe points that lie within the “convex
hull” of a set of vectors, representing weighted averages or mixtures of the
vectors where no weight is negative.

LUMS
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Operations on Vectors

Inner Product

The inner product (or dot product) of two vectors u,v € R” is a scalar
quantity that measures their similarity. It is defined as:

n
(u,v) =u'v = Zuzvz
i=1

Geometrically, the inner product is related to the angle between the vectors and
can be used to determine orthogonality, with (u,v) = 0 indicating that u and
v are perpendicular.

The inner product is fundamental in many aspects of machine learning and
Al serving as a basis for understanding distances, angles, and similarity between
vectors in various contexts.

LUMS
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Operations on Vectors

Inner Product - Applications

Similarity and Distance Measurement:
The inner product is commonly used to measure the similarity between vectors.
For example, in text analysis, the cosine similarity between two vectors u and

v is given by:

UTV

cosine Slmllarlty = m
ull||v

A higher inner product indicates greater similarity, which is useful in clustering,
classification, and recommendation systems.

Linear Regression and Least Squares:

In linear regression, predictions are computed as the inner product between a
vector of features x and a vector of weights w:

j=w' x.

LUMS
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Operations on Vectors

Inner Product - Applications

Neural Networks and Backpropagation:
In neural networks, the inner product is used in the forward pass to compute
the weighted sum of inputs to neurons:

2 =w x+b.

This forms the basis of linear transformations in fully connected layers.

Matrix Factorization for Recommender Systems:
In recommender systems, the inner product is used to predict user-item ratings.
Given user vector u and item vector v, the predicted rating is:

F=u'v.

LUMS

A Not-for-Profit University



Operations on Vectors

Inner Product — Applications — In class example:

Average age in a population. Suppose the 100-vector x represents the distribution of ages
in some population of people, with x; being the number of :—1 year olds, for: =1,...,100.
(You can assume that = # 0, and that there is no one in the population over age 99.)
Find expressions, using vector notation, for the following quantities.

(a) The total number of people in the population.
(b) The total number of people in the population age 65 and over.

(c) The average age of the population. (You can use ordinary division of numbers in
your expression.)

LUMS
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Operations on Vectors

Norm

The norm of a vector v € R™ is a measure of its magnitude or length. A norm
is a function || - || : R™ — R that satisfies the following properties:

Non-negativity: ||v|| > 0 for all v € R™.
Definiteness: ||v|| =0 if and only if v = 0.
Homogeneity (Scaling): ||av| = |a|||v]| for any scalar o € R.

Triangle Inequality: ||[u+ v|| < ||u| + ||v].

The p-norm (or Lp norm) of a vector v € R” is defined as:

n 1/p
Vip = | D lvil” , forp>1.
1=1

LUMS
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Operations on Vectors

Norm
The p-norm has special names for different values of p:

1-norm (Manhattan Norm or Taxicab Norm):

n
Vil =) Jvil.
1=1

It measures the sum of the absolute values of the components of v.

2-norm (Euclidean Norm):

n 1/2
Ivile = (Z%z) -

i=1
This is the standard Euclidean length or magnitude of v.

oo-norm (Maximum Norm or Chebyshev Norm):
1Vlloo = max ;.
1<i:<n

It measures the maximum absolute value of the components of v.

LUMS
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Operations on Vectors

Norm — Example:

Consider the vector v = [3 —4 Q]T. Let’s compute different norms of this
vector:
1-norm:
Vi =13+ |—4|+1]2|=3+4+2=09.
2-norm:
vz = (32 + (—4)2 +22)"% = (9 + 16 + 4)/? = v/29.
ocO-norm:

[Vlloo = max (I3[, | — 4], |2[) = 4.

LUMS
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Operations on Vectors

Distance

The distance between u and v under the p-norm, denoted as d,,(u, v), is defined
as the norm of their difference:

n 1/p
dp(u,v) = flu—v|, = (Z Jui — Uip> , forp>1.
i=1

Interpretation: Compare two vectors; close or far

LUMS
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Operations on Vectors

Application Examples

Prediction ervor

In regression and other predictive models, the prediction error is measured as
the distance between the true values y € R™ and the predicted values y € R".
The most commonly used distance is the Euclidean distance, which gives the
root mean square error (RMSE):

n 1/2
1 1

MSE = — v — vllo = — )2 .

RMS ﬁﬂysw V%<§@ y)>

1=1

The RMSE provides a measure of how closely the predicted values match the
true values.

Alternatively, the mean absolute error (MAE) uses the Manhattan distance:

1 1 <&
MAE = Z|ly — v|l; = = c— il
Mw vl ngJy Uil

LUMS
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Operations on Vectors

Angle 4 bc R"

T
0 = /(a,b) = cos™ L &L
(a,b) = cos™ roma

a2 LUMS
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Operations on Vectors

Correlation coefficient 4 5 R”

a=a—avg(a)l, b=0b—avg(h)l

~

al'b
p=——->=
all [|o]]
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Operations on Vectors

Standard Deviation

The standard deviation of a vector x € R™ is a measure of the spread or
dispersion of its elements around their average. It indicates how much the
components of the vector vary from the average value.

Let x = [ml To - :Un] ! be a vector of n elements. The average of the
vector, denoted as avg, is given by:

1 n
avg = ;;xz

The standard deviation o of the vector is defined as:

std(x) = ! Z(:z:Z — avg)?2.

n -
=1

This formula calculates the square root of the average of the squared deviations

from the average value, providing a measure of how much the components of
the vector deviate from the average.

LUMS
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Operations on Vectors

Standard Deviation

Relationship between std, avg and rms
The relationship between rms, avg, and std is given by:
rms? = avg? + std®.

This shows that the square of the rms is the sum of the square of the average
and the variance of the vector.

LUMS
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Operations on Vectors

Standard Deviation

Relationship between std, avg and rms

In machine learning, the performance of a model is often evaluated by its predic-
tion errors, which can be decomposed into three key components: bias, variance,
and noise. These components are closely related to the root mean square (RMS)
error, which measures the accuracy of the model’s predictions.

The RMS error of a model is a measure of how much the model’s predictions
differ from the true values. For a set of predictions y = [Ql Yo -+ g)n]T

and true values y = [yl Yo - yn] T, the RMS error is defined as:

n

1
RMS Error = | = Y "(y: — §:)2.
rror - i:1(y 9i)

The RMS error is often used as a loss function to measure the performance of
regression models.

LUMS
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Operations on Vectors

Standard Deviation

Relationship between std, avg and rms
The error in a model’s predictions can be broken down into bias and variance:

Bias: Bias refers to the error introduced by approximating a real-world
problem with a simplified model. It measures the difference between the
expected prediction of the model and the true value:

Bias(x) = E[(x)] — y(x),

where g(x) is the prediction of the model for input x, and y(x) is the true
value.

Variance: Variance captures the model’s sensitivity to variations in the
training data. It measures the spread of the model’s predictions around
the expected prediction:

Variance(x) = E[(j(x) — E[§(x)])?].

A high variance indicates that the model’s predictions vary greatly with
different training datasets, leading to overfitting.

LUMS
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Operations on Vectors

Standard Deviation

Relationship between std, avg and rms

The bias-variance trade-off is a fundamental concept in machine learning,
which states that there is a trade-off between the bias and variance of a model:
- A model with high bias typically makes simplistic assumptions, leading to
underfitting and poor predictive performance. - A model with high variance is
too sensitive to the training data, leading to overfitting and poor generalization
to new data.

The RMS error can be decomposed into the bias and variance components
of the model’s predictions, along with the inherent noise (irreducible error) in
the data. This is known as the bias-variance decomposition:

RMS Error? = Bias? + Variance + Noise.

Here: - Bias® is the square of the model’s bias. - Variance is the variability of
model predictions. - Noise is the irreducible error, representing the variance in
the true data distribution that cannot be explained by the model.

Balancing bias and variance is crucial for minimizing the RMS error and
achieving good model performance.

LUMS
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Operations on Vectors

Standard Deviation

Concept of Standardization

Let x = [azl To - xn] i be a vector of n elements. The standardized vector
z is obtained by subtracting the average (avg) and dividing by the standard
deviation (std) of x.

The standardized vector z is then computed as:

X — avg
Z=—")",

std

where the subtraction and division are element-wise operations.

Properties and Applications

- The standardized vector z has a mean of 0 and a standard deviation of 1.

- Standardization is commonly used in machine learning and data analysis to
improve the performance of algorithms that are sensitive to the scale of features,
such as gradient descent optimization, support vector machines, and k-means
clustering.

LUMS
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Span

The span of a set of vectors is the collection of all possible linear combinations
of those vectors. If vq,vs,...,vi € R™ are vectors, then the span is the set of
all vectors that can be expressed as:

span(vy,vo,...,vg) ={y € R" |y = c1v1 + cava + -+ - + ¢ v, ¢; € R}.

In other words, the span is the subspace of R™ formed by all linear combi-
nations of vi,va,...,vi. We will review the subspace concept later.

Properties and Applications

- The span of vectors provides a way to understand the dimensionality and
structure of the space they cover. For example, if the vectors are linearly inde-
pendent, the dimension of the span is equal to the number of vectors.

- The span is used to define vector spaces and subspaces in linear algebra, and
plays a key role in solving systems of linear equations, understanding linear
transformations, and performing dimensionality reduction in data analysis.

LUMS
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Span

Example
- n
If vi = |0| and vo = [1| in R?, then their span is the set of all vectors in the
0 0
ry-plane: o
a
span(vy,va) =< |b| |a,bER
0

LUMS
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Linear Independence

A set of vectors vi,vsy,..., v € R" is said to be linearly independent if no
vector in the set can be expressed as a linear combination of the others. In other
words, the only solution to the equation

c1vy +cavo + -+ v =0

is the trivial solution ¢y = cy = --- = ¢ = 0, where 0 is the zero vector in R".

If a set of vectors is not linearly independent, it is said to be linearly de-
pendent, meaning at least one vector in the set can be written as a linear
combination of the others.

Properties and Applications

- Linear independence is a fundamental concept in linear algebra, as it deter-
mines the basis of a vector space. A set of vectors that is linearly independent
and spans the space forms a basis (to be discussed in detail shortly).

- Determining linear independence is crucial in solving systems of linear equa-
tions, finding the rank of a matrix, and understanding the dimensions of vector
spaces.

LUMS
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Linear Independence

Example

) 1 . .
Consider the vectors vi = [0] and vo = [g] in R?. These vectors are linearly
independent because the only solution to

c1Vvy +coveg =0

is ¢y = co = 0. Hence, {v1, vy} forms a basis for R?.
: : 1 2 :
In contrast, if we consider u; = [1] and uy, = {2] , these vectors are linearly

dependent because us = 2u;.

LUMS
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Linear Independence

—0.3
c=1| 1.5
—2.7

1.2a —0.904+c=0

Examples
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Basis

Independence-Dimension Inequality
(Connection with linear independence):

The independence-dimension inequality is a fundamental result in linear
algebra that relates the number of linearly independent vectors to the dimension
of the vector space they inhabit. Specifically, it states that:

The number of linearly independent vectors in a vector space V
cannot exceed the dimension of V.

Mathematically, if dim(V) = n, then any set of vectors {vyi,va,..., v} C V is
linearly independent only if £ < n. If £ > n, then the set of vectors is guaran-
teed to be linearly dependent.

Implications

- In practical terms, it provides a way to verify the maximum number of linearly
independent vectors that can exist in any subspace. For example, in R3, any
set of more than 3 vectors must be linearly dependent.

LUMS
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Basis

Independence-Dimension Inequality — Example:
(Connection with linear independence):

Consider the vector space R?, which has dimension 2. According to the independence-
dimension inequality, any set of more than 2 vectors in R? will be linearly depen-

dent. For instance, the set of vectors vi = [(1)}, Vo = [(1)], and vy = E] in R?

is linearly dependent because the third vector can be written as a combination
of the first two:
V3 = V1 + Vva.

Thus, the independence-dimension inequality is a key principle in understanding
the structure and limitations of vector spaces.

LUMS
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Basis

Basis of a set of Vectors:

A basis is a set of vectors that has two key properties: it is both linearly
independent and spans a certain space. These properties ensure that the set
of vectors forms a ”building block” from which all other vectors in that space
can be uniquely represented.

Formally, a set of vectors {vi,va,...,vi} is a basis if:

The vectors are linearly independent, meaning none of the vectors in the
set can be expressed as a linear combination of the others.

The vectors span the space, implying any vector in that space can be
written as a linear combination of the basis vectors:

u=c1vy+cvy+ -+ Cp Vi,
where c1,co,...,cr € R are scalars.

- A basis allows every vector in the space to be represented uniquely as a linear
combination of the basis vectors.

LUMS
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Basis

Basis of a set of Vectors — Example:

0

Consider the vectors e; = [(1)] and ey = [1

] in R?. The set {e;, ey} forms a
basis for R2? because:

The vectors are linearly independent.

Any vector v = [Z} in R? can be written as a linear combination of e;
and es:

vV = ae; + beg.

Thus, {e1,ex} is a basis for R?, and the coefficients a and b uniquely deter-
mine any vector in this space.

LUMS
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Orthonormal Vectors

The concepts of orthogonal and orthonormal vectors are fundamental in under-
standing the geometric relationships between vectors.

Orthogonal Vectors
Two vectors u and v in R™ are said to be orthogonal if their inner (dot)
product is zero:

u'v =0.

Geometrically, this means the vectors are at a right angle to each other.
A set of vectors {vy,Vva,..., v} is called orthogonal if every pair of distinct
vectors in the set is orthogonal:

V-ij =0, foralli# j.

1

Orthonormal Vectors
A set of vectors is called orthonormal if it is orthogonal and, in addition,
each vector has a norm (length) of 1:

|villa=1 for all i.

In other words, the vectors are orthogonal to each other and are unit vectors.

LUMS
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Orthonormal Vectors

Orthogonal and orthonormal vectors are widely used in linear algebra and ma-
chine learning. Orthonormal vectors, in particular, simplify many computations,
such as projections, transformations, and finding solutions to linear equations,
due to their nice properties of orthogonality and unit length.

Example:

Consider the vectors e; = [(1)] and ey = [(1)] in R?:

These vectors are orthogonal because their inner product is zero:

e/es=1-0+0-1=0.

They are also orthonormal since each vector has a norm of 1:

leilz =1, [lez][2 =1.

LUMS
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Orthonormal Vectors

Linear Combination of Orthonormal Vectors

Significance of Orthonormal Vectors

Expressing a vector as a linear combination of orthonormal vectors has signifi-
cant advantages in both theoretical understanding and practical applications in
linear algebra and machine learning.

Simplified Coefficients (Projections):

When a vector u € R" is expressed as a linear combination of orthonormal
vectors {v1, va, ..., Vi }, the coefficients of this combination are simply the
inner products (projections) of u onto each orthonormal vector:

T

u=cvy+covy+---+cpvy, Wwherec; =v, u.

This property makes it easy to calculate the coefficients without solving a
system of equations, as would be required for general bases.

Uniqueness of Representation:

A vector expressed as a linear combination of orthonormal vectors has a
unique set of coefficients. This uniqueness is particularly useful in many
applications, such as signal processing, where signals are decomposed into
orthonormal basis functions (e.g., Fourier series).

LUMS
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Orthonormal Vectors

Linear Combination of Orthonormal Vectors

Example: Decomposing a Vector in R?
3
Consider the vector u = [4| and an orthonormal basis {vi, ve,v3}, where:

The coefficients of u in this orthonormal basis are simply:
co=viu=3, ca=vou=4, cz=vsu=0.
Thus, the vector u can be expressed as:

u = 3V1 + 4V2 + OV3.

LUMS
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Outline

» Gram-Schmidt Orthogonalization
« Overview
* Algorithm

* Example
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Gram-Schmidt Orthogonalization

Overview: Input: Given a list of vectors a1, aq,...,ax
Output:
1. Test linear independence
2. Orthonormal vectors q1,qa, ..., gk

LUMS
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Gram-Schmidt Orthogonalization

1 =a; = (g) 1G]l = V42 +32=v164+9=+v25=5

go = az — (qlTaz) ¢1  We now subtract the projection of as onto ¢.
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Gram-Schmidt Orthogonalization

1G]l = V42 +32 = V16 + 9 = V25 = 5

go = az — (qlTaz) ¢1  We now subtract the projection of as onto ¢.

o= ()= 0 ()= 3)
. . —2 - =0+ 3 =
e 0= (3)-(3) - (324) - (7)

6\ [/8)\? 36 64 100
" p— _ — p— e  i— _— = 4:2 =
Wl \/( 5 ) i (5) 25 25 s = VA 12

a2 LUMS
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Gram-Schmidt Orthogonalization

Interpretation

az
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Orthogonalization

Normalization

i—1
. G
4 = Qi — Z(Qj ai) 4; 9= Tal
i=1
g1
q |
az |II ‘
a2 Iteration 1
f f
i 'II
II. q |
- T
az (g1 az)q L-_____ Iteration 2
[-1;2 Jz -



Gram-Schmidt Orthogonalization

Algorithm:

Input: Given a list of vectors ay,as, ..., ax
Output:
1. Test linear independence
2. Orthonormal vectors ¢1,¢qs, ..., qx
1—1
qi = a; — Z(qgai) d; Orthogonalization
j=1
g = L

Normalization

If g; =0, we detect linear dependence.

LUMS
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Example for £k = 3

o 1—1

g1 = a1
52:&2—
g3 = as —




Outline

* Vector Spaces
* Subspaces

» Dimension of subspace
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Vector Space

Definition

Two operators:
Let V be a set of vectors. PO ) Ao o el
(- ) multiplication with scalar

For u,v,w € V and a,b € R, following axioms hold

IL.u+veV 6. au eV

2. utv=v+u 7. a(u+v)=au + av
3. (u+v)+w=v+ (u+w) 8. (a+bu=au + bu
4.0€V: v+0=w 9. (ab)u=a(bu)

5. 3—ueV: u+(—u)=0 10. (DHu=u

LUMS
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Subspace

Definition
- V is a vector space

- W is a subset of V
- If W is also a vector space under the addition and scalar multiplication that

is defined on V
then W is a subspace

Alternatively

W, a subset of V', is a subspace if
-0e W Non-emptiness

-Foru,veW,ut+veW Closure under addition
-Forae Rand u e W, au € W Closure under multiplication

e Every vector space V has at least two subspaces. Namely, V itself and
{0} (the zero subspace).
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Subspace

Examples (Subspace or not): (v
—
Line through origin Plane through origin

" Line not through origin First quadrant Line union plane
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Subspace

Examples — In class questions:

(a) Let I7"be the set of all points, (x,y). from R* in which x>0 . Is thisa

subspace of R*?

(b) Let I_Fbe the set of all points from R’ of the form (0,x,,x;). Is this a

subspace of R’?
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Dimension of Subspace

The number of vectors in any basis of Vis called the dimension of V.

Expressed as dim(V)

Examples

- line through origin in R*

- plane through origin in R?
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