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Matrices

Definition:

A matrix is a two dimensional (2D) vector or array of numbers.

Notation:

Usually denoted by a capital letter symbol; stack the list of numbers in 2D array.

For example, consider a matrix A of 6 real numbers represented as stack of 3 2-
vectors using square or round parentheses:

~11 173 27 ~11 173 27 .
4= [30.1 19.1 8.4] A= (30.1 19.1 8.4) 2> 3 matrix
Size of a matrix: Number of rows (m) times number of columns (n); m Xn

We express matrix B of size m x n as B € R™*™ and call it m X n-matrix.

Entry of a matrix: B;; - entry in the matrix at ¢-th row and j-th column.

For example, Ay; = 30.1.

LUMS
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Matrices

Square Matrix: m =n  Tall Matrix: m > n Wide Matrix: m <n

Zero Matrix: A matrix with all elements equal to zero.
denoted by 0 € R"™*"™,

Identity Matrix: A square matrix with diagonal elements equal to one and off diagonal
elements equal to zero.

denoted by I = I,, € R™*™ and is defined as

1 =3
(I)zj — . . — 573,3'
0  t#7
Diagonal Matrix:
Block Matrix: Triangular Matrix: _ -
B C 1 -1 0.7 0.6 0
4:[9 E] 0 1.2 —1.1 {—- -
0 0 32 —0-3 35

LUMS
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Examples of Matrices - Applications

Image RGB
Each color represents a matrix.

Quantities

An mxn-matrix A can represent the amounts or quantities of n
different resources or products held (or produced, or required) by an

entity such as a company at m different locations or for m different
customers.

For example, mxn-matrix represents the quantity of n products stocked
in m number of warehouses.

LUMS

A Not-for-Profit University




Examples of Matrices - Applications

Time series grouped over time

« 12x20-matrix can represent the average monthly
temperature, rainfall, pressure etc of 20 cities of Pakistan.

« 30X7-matrix can represent number of patients suffering from
a disease over the next 30 days for 7 states/territories.

+ Other examples include exchange rate, audio, and, in fact, any
quantity that varies over time.

LUMS
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Operations on Matrices

Additivity and Scaling

Additivity of Matrices: The sum of two matrices A and B of the same
dimensions is obtained by adding their corresponding entries:

(A+ B)i; = Aij + Bij.

Scaling of a Matrix by a Scalar: A matrix A can be scaled by a scalar a by
multiplying each entry of the matrix by the scalar:

(CkA)ij = CkAij .

LUMS
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Operations on Matrices

Additivity and Scaling

[0 4 1 2 1 6
T 0 + 2 3 — 9 3
'3 1| |0 4] |3 5
1 6 2 19
(—2)] 9 3 |=| —-18 -6
6 0| | -12 0
<% LUMS
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Operations on Matrices

Transpose and Concept of Symmetric Matrices

Transpose of a Matrix: The transpose of a matrix A, denoted as A", is
obtained by swapping its rows and columns. If A is an m X n matrix, then the
transpose A is an n X m matrix, and its entries are given by:

(A")ij = Aji.

Symmetric Matrices: A square matrix A € R™*" is called symmetric if it is
equal to its transpose:

A=A,
This implies that the entries of A are symmetric across the main diagonal, i.e.,

Aij = Aji for all Z,]

Skew-Symmetric Matrices: A square matrix A € R™ "™ is called skew-
symmetric if it is equal to the negative of its transpose:

A=—AT,

This implies that the diagonal entries of A are zero (A;; = 0 for all i), and the
off-diagonal entries satisfy A;; = —A;; for all 4, j.

LUMS
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Operations on Matrices

Transpose and Concept of Symmetric Matrices

- 1T
U4 0 7 3
CU =1y 0
_31_
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Operations on Matrices

Transpose and Concept of Symmetric Matrices

e Any square matrix can be expressed as a sum of symmetric matrix and a
skew symmeytric matrix.

This decomposition is given by:

A=S+K,
where: -
A+ A
S = +T (symmetric part),
A—AT
K = —5 (skew-symmetric part).
Here, S is symmetric since ST = S, and K is skew-symmetric since K ' = —K.

This decomposition is useful for analyzing the properties of A, as it separates
the matrix into its symmetric and skew-symmetric components.

LUMS
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Operations on Matrices

Matrix Norm
The Frobenius norm of a matrix A € R™*" denoted as ||A||r, is a measure
of the magnitude of the entries of the matrix, defined as

IAlr = D> 143

i=1 j=1

Alternatively, the Frobenius norm can be viewed as the 2-norm of the vector
formed by stacking all the entries of A.

Use Cases

Measuring the Error of Matrix Approximations: To quantify the
error between an original matrix A and its approximation A. The error is
measured as:

1A= Allp.

Regularization in Optimization Problems: In machine learning and
optimization, the Frobenius norm can be used as a regularization term to
prevent overfitting. Given a parameter matrix W, a regularization term
such as ||WW||% is added to the objective function to penalize large weights.

LUMS
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Operations on Matrices

Trace of a Matrix

The trace of a square matrix A € R"*", denoted by tr(A), is the sum of its
diagonal elements:

=1

The trace is a linear operator and has several useful properties, such as being in-
variant under cyclic permutations of matrix products, i.e., tr(ABC) = tr(CAB).

Use Cases in AI and Machine Learning

Dimensionality Reduction (PCA): In Principal Component Analysis
(PCA), the trace is used to measure the total variance retained by a set of
principal components. If A is a diagonal matrix containing the eigenvalues
of the covariance matrix, the trace tr(A) represents the total variance,
helping to select the components that capture the most variance. We will
cover this in more detail later in the course.

LUMS
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Matrix-Vector Multiplication

A c RMXn T Rnxl (Rn)

number of columns of A equals the size of x

y = Ax y € R™*1 (R™)
_yl- _A11 Ap ... Aln_ _5’61_
Y2 B Ao Aa Aap T2
| Ym | _Aml Am? s Amm_ | Tn |

n
Y = E A-'.i.f;:xk. — Ailxl + - F A'.i.-n..xnr
k=1

LUMS
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Matrix-Vector Multiplication

Interpretation In terms of Rows of Matrix

_All A12

Al’n, |

" (8]
Y2 T2
Ym | [ "'m

LUMS
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€1
T2

_yl | T
Yo Ao Az Aop T }
. . . _ y = Ax
_ym_ _Aml AmQ Amn_ _CUn_
n
Yi = Z A’lﬁi‘l:k — Ailwl + - A'i.-n.wn.: 1= 1 L
k=1



Matrix-Vector Multiplication

_yl _
Y2

Ym

Interpretation In terms of Columns of Matrix

_All A12
A21 A22
Aml AmZ

Al’n, |
A2n

Amn_

1
T2

Ln

n -
Y = E A-'ik:xk. — Ailwl + -+ A-'i.-n.irn.: 1= 1 . 1T
k=1

U1
Y2

Ym |

[ala az,

. an]

Ty
T2

y = Ax

Yy = Ir1aq + xoao + - -+ Tpay

e This shows that y = Ax is a linear combination of the columns of A; the
coefficients in the linear combination are the elements of z.

LUMS
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Matrix-Vector Multiplication

Application Examples

—- For example, 200x70 -matrix represents the
quantity of 70 products stocked in 200 warehouses.

Calculating Total Value of Stock in Each Warehouse
If the price of each product is represented by a vector p € R7?, then the
product

y = Ap

will be a vector of length 200, where each element of y represents the total
value of stock in the corresponding warehouse.

Estimating Total Weight of Stock in Each Warehouse
If the weight of each product is given by a vector w € R7?, then

y = Aw

will represent the total weight of stock in each warehouse, useful for logis-
tics and transportation planning.

LUMS
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Matrix-Vector Multiplication

Application Examples

—- For example, 200x70 -matrix represents the
quantity of 70 products stocked in 200 warehouses.

Calculating Stock Value per Warehouse with Seasonal or Dis-
counted Pricing

If the prices of the products change due to seasonality or discounts, rep-
resented as a vector Peeason € R’°, then

Yy = Apseason
will provide the updated total value of stock in each warehouse.

Determining Warehouse Demand for Product Replenishment
If each product has a "replenishment coefficient” r € R, indicating stock
to be reordered based on warehouse quantities, then

y = Ar

will yield the replenishment demand per warehouse.

LUMS
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Matrix-Vector Multiplication

Application Examples

Feature matrix and weight vector

Let A € RX" represent a matrix where each column corresponds to one of n
images, and each column is a d-dimensional feature vector describing various
characteristics of the images.

Transforming Image Features Using a Weight Vector for Classi-
fication

If there is a weight vector w € R? that transforms or combines the features
of each image for a classification task, then

y=A'w

will produce a vector y € R™, where each element corresponds to a trans-
formed score for each image, which can be used for predicting class labels
or performing further analysis.

LUMS
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Matrix-Vector Multiplication

Application Examples

Feature matrix and weight vector

Let A € RY*™ represent a matrix where each column corresponds to one of n
images, and each column is a d-dimensional feature vector describing various
characteristics of the images.

Calculating the Similarity of All Images to a Reference Image
If a reference image has a feature vector g € R?, then the product

y=A"q

will yield an n-dimensional vector y, where each entry represents the simi-
larity (e.g., dot product or cosine similarity) of the reference image to each
of the n images. This can be useful in image retrieval or recommendation
systems.

LUMS
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Matrix-Vector Multiplication

Application Examples

Expansion in a basis

Yy = T1aq + xoao + - -+ Tpay

LUMS

A Not-for-Profit University

T

Y2

| Ym |

[a,l, aos, ...

oS

T

o




Matrix-Vector Multiplication

Application Examples

Linear dependence of columns

The columns of a general matrix A € R™*™ are linearly dependent if there

exists a set of scalars ¢y, c¢s,...,c,, not all zero, such that:

c1a; + cgas + -+ +cpa, =0,

where aj,as, ..., a, are the columns of A, and 0 is the zero vector in R™.

Equivalently, in matrix form:

C1
C2
A = 0,
Cn
T . . "
where [01 co - cn} 1S a non-zero vector in R".

LUMS
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Matrix-Vector Multiplication

Linear Transformation Interpretation:

Input-Output System Interpretation

y = Ax

rec R"

ye R™

LUMS
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Matrix-Vector Multiplication

Input-Output System Interpretation

r e R"

a2 LUMS

A Not-for-Profit Uni
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Matrix-Vector Multiplication

Input-Output System Interpretation

rze R"
Examples
1 1 0 T
A:[O 0 1] a:;
X3
1
-3
5
‘LUMS

A Not-for-Profit Uni
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Matrix-Vector Multiplication

Input-Output System Interpretation

r e R"

Examples

o= O O

==}

LUMS
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Matrix-Vector Multiplication

Input-Output System Interpretation

r e R"

Examples

_ O O O
o~ O O

LUMS
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o o= O

oo O =

I
Zr2
I3
T4

A

 Z

ye R™

Generalization: Permuation matrix

e Permutaion matrix entries P; ; € {0, 1}

e one non-zero entry equal to one per row

e one non-zero entry equal to one per column



Matrix-Matrix Multiplication
AeR™™ B ecRM¥P C =AB

no. of columns in A = no. of rowsin B = n

C e RM*P
(C11 Ciz ... Chp] (A, A ... A, [Bin | Bie
C1’21 022 s O2p B A21 A22 ce A2n Ba1 | Bao
_le Cm2 s Cmp_ _Aml Amg - Amn_ _Bnl Bn2
[by, b, ...

r
C pr— AB ﬁ Cij — Z AikBkj — Ai]B]j‘i_' * '+At’poju
k=1

LUMS
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Matrix-Matrix Multiplication

Properties:

not commutative: AB # BA in general

associative: (AB)C = A(BC) so we write ABC

associative with scalar-matrix multiplication: (yA)B = y(AB) = yAB

(AB)! = BT AT

A B W Y | | AW+BX AY +BZ
C D X Z| | CW+DX CY+DZ

e Dimensions must be compatible.

LUMS
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Matrix-Matrix Multiplication
REEIEEE i

Outer product of Vectors:

(111)1 (11b2 (lll)n
(12[)]_ (12[)2 e (’21)71
ambr  amba  --- ambn
Gram Matrix:
i ﬂ,r{ﬂl ar{{lg s {1:1‘“.*.1“ |

agal agag SRIC e 1 97

nd1 a4 ds - a4, 0y

LUMS
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Outline

* Systems of Linear Equations
* Formulation

* [nverses
e Left-inverse

Right-inverse

Inverse

Pseudo -inverse

Connection with the linear equations
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Systems of Linear Equations

Formulation:
4411;51 + 4412;(?2 + - T 441 L = bl - - - - - -
e A A oo A | |1 by
Agrry + Aggwg + -+ + Agpny = bo Asi  Ass ... Aoy | |xo by
_ _— - Ar =b
Amit1 + Amata + -+ Apntn = by _Aml Apz ... Amm_ [ Tn_ [ Om |
- one solution
n m . :
Ae RM*" rcR" beR - multiple solutions
ri,T2,...,T, - variables or unknowns _ no solution

b1,ba, ..., b, - knowns, measurements, equation righ-hand side

A;; - coefficient of the i-th equation associated with the j-th variable

LUMS
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Systems of Linear Equations

- m < n under-determined

A‘,I; — b - M = n square

- m > n over-determined

Example 01 Example 02

A Y i 1 r1 = —1?

r1+ao =1, 19+ 13 =2

1 1 0 1
A:lo 1 1]' bz[z]

- multiple solutions

R

;51—1'2:0

- no solution

LUMS
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Inverses

Left-Inverse:

X is a left inverse of A if

XA=1

A is left-invertible if it has at least one left inverse

Example:
3 -4
A= 6
1 1
Left inverses
L[ -11 10 16 0 -1/2 3
o| 7 8 -1l 0 1/2 -2

LUMS
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Inverses

Left-Inverse:

Left-invertibility and column independence:

If A has a left inverse X then the columns of A are linearly independent.

Assume Az =0

X(Ax) =0 (XA)r=Ir=x2=0
Connect with independence-dimension inequality:
When A is wide; A € R™*"  m <n /A € R™*"™ can be left invertible
- Columns are linearly dependent m=mnorm>n
A is not left invertible. 9 Square or Tall

LUMS
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Inverses

Left Inverse: Connection with the Systems of Linear Equations

A:L‘ _ b - M = n square

- m > n over-determined

- If A has a left inverse X, then we multiply with X the above system

X(Az) = Xb r=Xb

/If A has the left inverse X, A

- If solution exists for the system Ax = b.
- there is at most one solution

x = Xb is the only solution of Ax = b. o o
- if exists, solution is x = Xb

N J

- If there is no solution for the system Az = b.

x = Xb does not not satisfy Ax = b.

In summary, a left inverse can be used to determine whether or not a solution
of an over-determined set of linear equations exists, and when it does, find the
unique solution.

LUMS
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Inverses

Right-Inverse:

X is a right inverse of A if
AX =1

A is right-invertible if it has at least one right inverse

Example: Right inverses
1 -1 10 I -1
1 0 1 1
A:IO | 1‘ =l -1 1, 0 1 1. 00
2
11 0 0 0 1

Connection with the left Inverse:

If X is a right inverse of A, then X7 is the left inverse of AL
I=1"=(AX)T =XTAT = XTAT =1

LUMS
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Inverses

Right-Inverse:

Right-invertibility and row independence:

If A has a left inverse X then the columns of A are linearly independent.

l

If A has a right inverse X then the rows of A are linearly independent.

Connect with independence-dimension inequality:

When A is tall; A€ R™*" m >n
- rows are linearly dependent

A is not right invertible.

LUMS
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Inverses

Right Inverse: Connection with the Systems of Linear Equations

Ax =0

- m = n square

- m < n under-determined

- If A has a right inverse X, then we substitute x = X in the above system

AXb)=1b=1b = a = Xb solution of Ax =

- If solution exists for the system Ax = b.

x = Xb is the solution out of many solutions of Ax = b.

Gf A has the right inverse X,

- one solution is x = Xb

N

~

- there is at least one solution

J

- m < n under-determined

e In summary, a right inverse can be used to find a solution of a square or

underdetermined set of linear equations, for any vector b.

LUMS
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Inverses

Inverse:

If a matrix has|bothleft and right inverses;
- they are (inique)and Equal

XA=1, AY=1 = X=X(AY)=(XAY =Y

X =Y is referred to as the [inverse)of the matrix A, denoted by AL,

Example:

LUMS
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Inverses

Inverse: Connection with the Systems of Linear Equations

Ax =0

- If A is invertible, Az = b has the unique solution given by

r= (A1)

LUMS

A Not-for-Profit University



Inverses

Inverse: Properties of Nonsingular or Invertible Matrix

Square matrix A is nonsingular if it is invertible.

Following statements are equivalent for a square matrix A.

1. A is left-invertible

(@)
. . left-i tible ———— linearly independent columns
2. the columns of A are linearly independent ERRRI S y indep
is riaht-i - (b) b
3. A is right-invertible 1 (b)
linearly independent rows ¢——(a) right-invertible

4. the rows of A are linearly independent

LUMS
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Inverses

Inverse: Examples

The identity matrix I is invertible, with inverse I=! = I, since I = I.

A diagonal matrix A is invertible if and only if its diagonal entries are
nonzero. The inverse of an n x n diagonal matrix A with nonzero diagonal

entries is
—_— 1 —
v (1) 0
- 0 Aoy 0
: 1
| 0 0 y
since
- A -
Ao 0
0 4= 0
AA~L = A2 =1
Ann
0 0 v

In compact notation, we have

diag(A11, ..., Ann = diag(A7; ,...,A;le.
‘LUMS 11 ) ( 11 )

A Not-for-Profit University
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Inverses

Inverse: Examples

the Gram matrix associated with a matrix
A:[al a - an]

is the matrix of column inner products

CZTCZ] a;az s aian

ATA: QQG] a2a2 agan
T T r

a,da; dpdz -+ dydy

the Gram matrix is nonsingular if only if A has linearly independent columns

ATax =0 = xTATAx = (Ax) (Ax) = ||Ax|]> = 0

— Ax=0

—= x=0

LUMS
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- A e R™*"™ with orthonormal columns

ATA=1



Inverses

Inverse: Examples

Orthonormal Matrix

- A € R™" with orthonormal columns
ATA =1

A_l — AT

- AT is also orthonormal.

LUMS
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Orthogonal Matrix

- A e R™"™ with orthonormal columns

ATA =1 .
At =A" : Inner product (Ax)' (Ay) = x" AT Ay = x"y
T - '

- A* is also orthogonal. : — 1Ax] = ((Ax)T(Ax))l/z _ (xTx)l/z = ||x|l
Matrix with orthonormal columns : Distance |IAx — Ay|| = [|x — v||
- A € R™*" with orthonormal columns : Angle J(Ax,Ay) = /(x,y)

ATA =T |

l

Linear transformation using ‘matrix with orthonormal columns’ preserves norm,
distance, angle and inner product.

LUMS
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Inverses

Pseudo Inverse: Matrix with linearly independent columns

e suppose A € R™" has linearly independent columns

e this implies that A is tall or square (m > n)

the pseudo-inverse of A is defined as

AT = ATA) AT

Equivalent Statements
- A is left-invertible

- AT A is nonsingular

"

\

- the columns of A are linearly independent

)

LUMS
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(Left Pseudo-Inverse)

- A is left-invertible
ATA=ATAy AaTa) =1



Inverses

Pseudo Inverse: Matrix with linearly independent rows

e suppose A € R™ has linearly independent rows

e this implies that A is wide or square (m < n)

the pseudo-inverse of A is defined as

AT = AT(aAT) ! (Right Pseudo-Inverse)
/Equivalent Statements A - A is right-invertible
- A is right-invertible AAT = (AATYAATY T = 1

- the rows of A are linearly independent

\_- AA" is nonsingular )

LUMS
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