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Nomenclature

Supervised Learning Setup

In these regression or classification problems, we have

- Inputs – referred to as Features

- Output – referred to as Label

- Training data – (input, output) for which the output is known and is 

used for training a model by ML algorithm

- A Loss, an objective or a cost function – determines how well a trained 

model approximates the training data

- Test data – (input, output) for which the output is known and is used 

for the evaluation of the performance of the trained model



Nomenclature - Example

Supervised Learning Setup

Predict Stock Index Price

?
?
?

- Features (Input)

- Labels (Output)

- Training data



Supervised Learning Setup

Example

Model (h) Prediction

MNIST Data:
- Each sample 28x28 pixel image 
- 60,000 training data
- 10,000 testing data



Supervised Learning Setup

Formulation

?
?
?



Supervised Learning Setup

Formulation

Regression:

Classification:



Supervised Learning Setup

Example

Model (h) Prediction of Oxygen Saturation  

Data of 200 Patients:
- Age of the patient
- Cholesterol levels
- Glucose levels
- BMI
- Height
- Heart Rate
- Calories intake
- No. of steps taken



Supervised Learning Setup

Learning



Supervised Learning Setup

Hypothesis Class

Q: How?

A:



Supervised Learning Setup

Loss Function

Q: How do we evaluate the performance?

A:



Supervised Learning Setup

0/1 Loss Function:

Zero-one loss is defined as

Interpretation:

- Note normalization by the number of samples. This makes it the loss per sample.

- Loss function counts the number of mistakes made by hypothesis function on D.

- Not used frequently due to non-differentiability and non-continuity.



Supervised Learning Setup

Squared Loss Function:

Squared loss is defined as (also referred to as mean-square error, MSE )

Interpretation:

- Again note normalization by the number of samples.

- Loss grows quadratically with the absolute error amount in each sample. 

Root Mean Squared Error (RMSE):

RMSE is just  square root of squared loss function:



Supervised Learning Setup

Absolute Loss Function (Mean Absolute Error):

Absolute loss is defined as

Interpretation:

- Loss grows linearly with the absolute of the error in each prediction.

- Used in regression and suited for noisy data.

* All of the losses are non-negative



Supervised Learning Setup

Learning

Recall

(Optimization problem)

Q: How can we ensure that hypothesis h will give low loss on the input not in D?



Supervised Learning Setup

A: Train/Test Split

Interpretation:

- 0% loss error on the training data (Model is fit to every data point in D).

- Large error for some input not in D 

- First glimpse of overfitting.

Q: How can we ensure that hypothesis h will give low loss on the input not in D?

Revisit:



Supervised Learning Setup

How to carry out splitting?

Generalization:  The Train-Test Split

You can only use the test dataset once after deciding on the model using training dataset



Supervised Learning Setup

Learning (Revisit after train-test split)

Evaluation



Supervised Learning Setup

Generalization:  The Train-Test Split

Q: Idea:

Validation data is used to evaluate the loss for a function h that is 
determined using the learning on the training data-set. If the loss 
on validation data is high for a given h, the hypothesis or model 
needs to be changed.



Supervised Learning Setup

Generalization:  The Train-Test Split

More explanation* to better understand the difference between validation and test data:

- Training set: A set of examples used for learning, that is to fit the 
parameters of the hypothesis (model).

- Validation set: A set of examples used to tune the hyper-
parameters of the hypothesis function, for example to choose the 
number of hidden units in a neural network OR the order of 
polynomial approximating the data.

- Test set: A set of examples used only to assess the performance of 
a fully-specified model or hypothesis.

Adapted from *Brian Ripley, Pattern Recognition and Neural Networks, 1996



Supervised Learning Setup

Generalization:  The Train-Test Split (Example)

Cross validation simulates multiple train-test splits on the training data



Supervised Learning
Classification Algorithms or Methods

Predicting a categorical output is called classification

Classification

Frequency Table

Covariance Matrix

Similarity Function

Others

Bayesian Methods

Decision Trees

Linear Dis. Analysis

Logistic Regression

K Nearest Neighbor

Neural Network

Support Vector 
Machine



Outline

- k-Nearest Neighbor (kNN) Algrorithm Overview

- Algorithm Formulation

- Choice of k

- Storage, Time Complexity Analysis



k-Nearest Neighbor (kNN) Algorithm
Idea:

?

- Two classes, two features

- We want to assign label to 

unknown data point?

- Label should be red.



Idea:

k-Nearest Neighbor (kNN) Algorithm

- We have similar labels for similar features.

- We classify new test point using similar training data points.

- Given some new test point x for which we need to predict the class y.

- Find most similar data-points in the training data.

- Classify x “like” these most similar data points.

- How do we determine the similarity?

- How many similar training data points to consider?

- How to resolve inconsistencies among the training data points?

Algorithm overview:

Questions:



1-Nearest Neighbor:

k-Nearest Neighbor (kNN) Algorithm

Simplest ML Classifier
Idea:  Use the label of the closest known point

Label should be red.

Generalization:
Determine the label of k nearest neighbors and 
assign the most frequent label

Label should be red

k=3

Label should be blue

k=7



Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

Interpretation:



Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

- Instance-based learning algorithm; easily adapt to unseen data



Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm



Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/ 

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/


Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- No assumptions about the distribution of the data

- Non-parametric algorithm

- No parameters

- Hyper-Parameters 

- k (number of neighbors) 

- Distance metric (to quantify similarity)



Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- Complexity (both time and storage) of prediction increases with the size 

of training data. We will review this shortly.

- Can also be used for regression (average or inverse distance weighted 

average)

- For example, 



- For binary classification problem, use odd value of k. Why?

- In case of a tie:

- Use prior information

- Use 1-nn classifier or k-1 classifier to decide

- Missing values in the data

- Average value of the feature.

Practical issues:

k-Nearest Neighbor (kNN) Algorithm



Distance Metric:

k-Nearest Neighbor (kNN) Algorithm



- Mismatch in the values of data

- Issue: Distance metric is mapping from d-dimensional 

space to a scaler. The values should be of the same order 

along each dimension.

- Solution: Data Normalization

Practical issues in computing distance:

k-Nearest Neighbor (kNN) Algorithm



- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Choice of k

- Storage, Time Complexity Analysis

Outline



- k=1
Sensitive to noise
High variance
Increasing k makes algorithm less sensitive to noise 

- k=n
Decreasing k enables capturing finer structure of space

Idea: Pick k not too large, but not too small (depends on data)
How?

Choice of k:

k-Nearest Neighbor (kNN) Algorithm



Choice of k:

k-Nearest Neighbor (kNN) Algorithm

- Learn the best hyper-parameter, k using the data.

- Split data into training and validation.

- Start from k=1 and keep iterating by carrying out (5 or 10, for example) 
cross-validation and computing the loss on the validation data using the 
training data.

- Choose the value for k that minimizes validation loss.

- This is the only learning required for kNN.



- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Choice of k

- Storage, Time Complexity Analysis

Outline



Algorithm Computational and Storage Complexity:

k-Nearest Neighbor (kNN) Algorithm

Input/Output:

Steps:



Algorithm:

k-Nearest Neighbor (kNN) Algorithm

1. Find distance between given test point and feature vector of every point in D.

2.  Find k points in D closest to the given test point vector to form a set SX.

3.  Find the most frequent label in the set Sx and assign it to the test point.

Steps: Computational Complexity

Computational Complexity:

Space Complexity:
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