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Regression

Regression: Quantitative Prediction on a continuous scale

- Given a data sample, predict a numerical value

X —p  Process or System —_— Y

Input Observed
Output
, f(x)
Process or
X System - y
Input Noise N Observed
Output

Example: Linear relationship

Here, PROCESS or SYSTEM refers to any underlying physical or logical
phenomenon which maps our input data to our observed and noisy output data.

LUMS
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Regression

Overview:
X —p Process or System —> Y
Input Observed
Output
One variable regression: Yy is ascalar
Multi-variable regression: y isavector )
- We will cover
Single feature regression: X is ascalar

Multiple feature regression: X is a vector

LUMS
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Regression

Examples:

Single Feature:

- Predict score in the course given the number of hours of effort per week.

-—

Establish the relationship between the monthly e-commerce sales and the advertising costs.

Multiple Feature:

- Studying operational efficiency of machine given sensors (temperature, vibration) data.

- Predicting remaining useful life (RUL) of the battery from charging and discharging information.

Estimate sales volume given population demographics, GDP indicators, climate data, etc.
Predict crop yield using remote sensing (satellite images, gravity information).

Dynamic Pricing or Surge Pricing by ride sharing applications (Uber).

Rate the condition (fatigue or distraction) of the driver given the video.

Rate the quality of driving given the data from sensors installed on car or driving patterns.

LUMS
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Model Formulation and Setup:

True Model:

We assume there s an inherent

but unknown relationship between
input and output.

y = f(x)+n

Goal:

Given , we need to
estimate the unknown functional

relationship as accurately as possible.

LUMS
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Regression

Process or
System

f(x)

09y ©

~ ?—» y
Noise N Observed

Output

Bl True unknown function
O Observations




Model Formulation and Setup:

- Single Feature Regression, Example:

A Not-for-Profit University

Regression

Input

Process or

System

Training Data

_—

~{-» (O First Data Sample:
~|" Second Data Sample:

|70 n-th Data Sample:

~——

f(x)
: Y
Noise N Observed

Output

D = {(Xlayl)a (X2992)7 sy (Xn;yn)} C Xd XY




Model Formulation and Setup:

We have:

© First Data Sample:

O n-th Data Sample:

O Second Data Sample: {X(Z),y(Z)}

{x(n), y(n)f

Regression

Input
Xﬁ

e For some input x, ¢y is our model output.

Process or f (X>
System
Noise |
‘ Model
yA — f(xa 9)

e Assume that our model is f (x,8), characterized by the parameter(s) 6.

e Model f(x,80) has

e A structure (e.g., linear, polynomial, inverse).

e Paramaters in the vector 8 = 01,05, ...,0,].

e Our model error is e = y — 4.

LUMS
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Linear Regression

Overview:

- Second learning algorithm of the course
- Scalar output is a linear function of the inputs

- Different from KNN: Linear regression adopts a modular approach which we will use
most of the times in the course.
- Select a model
- Defining a loss function
- Formulate an optimization problem to find the model parameters such that a loss
function is minimized.

- Employ different techniques to solve optimization problem or minimize loss function.

LUMS
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Linear Regression
Model:

What is Linear?
We have D = {(leyl)a (X2?y2)9 R (Xnayn)} C Xd X y

Interpretation:

~

e d=1 f(x,0) = 0y + 01z Line.
o d=2 f(X, 9) = 90 + 915171 + 92332 Plane.
o d f (x,0) = 0y + 01 x Hyper-plane in R4*!

For different 0y and 0, we have different hyper-planes.
How do we find the ‘best’ line?

What do we mean by ‘best’?

LUMS
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Linear Regression
Model:

We have D = {(x1,v1), (X2,%2)s - s (Xnsyn)} C X4 x Y

Model is a linear function of the features, that is,

e Linear structure.

e Model Paramaters: 6y and 8 = [01,0-,...,04].
e O, is bias or intercept.
e 0 =1[01,0,,...,04] represents the weights or slope.

e (; quantifies the contribution of i-th feature x;.

LUMS
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Linear Regression
Define Loss Function:

- Loss function should be a function of model parameters.

e For input x, our model errorise=y —y =y — f(x, 0) =y—0y— 01'x.

e ¢ is also termed as residual error as it is the difference between observed
value and predicted value.

A

e d=1 f(x,0) = 60y + 0,z

Observed values

Residual error

True unknown function:
O f(z) = 4.2+ 2.4z

LUMS
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Linear Regression

Define Loss Function:
o For D = {(x1,y1), (X2,%2), ..., (Xn,yn)} C X% x ), we have

e; =1y; — 0y — GTXi, 1 =1,2,...,n

e Using residual error, we can define different loss functions:
mn

L(0y,0) = Z (yi — 60 — GTX1)2 Least-squared error (LSE)
1=1

1
L(60,60) == (yi — b0 — 0"x:)" Mean-squared error (MSE)

n “
1=1

L(0y,0) = \l 1 Z (i — 0o — BTxi)2 Root Mean-squared error (RMSE)

n <
=1

- One minimizer for all loss functions.

LUMS
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Linear Regression

Define Loss Function: o

1
e We minimize the following loss function: £(6p,0) = 3 Z (yZ — Oy — GTxi)2
i=1

e We have an optimization problem: find the parameters which minimize
the loss function. We write optimization problem (with no constraints) as

.. 1 - 2

minimize L(6p,0) = = E — by — 9TXi)
00,0 T2 -
1=

Factor % is added to make the formulation mathematically more convenient.

How to solve?

e Analytically: Determine a critical point that makes the derivtive (if it
exists) equal to zero.

e Numerically: Solve optimization using some algorithm that iteratively
takes us closer to the critical point minimizing objective function.

LUMS
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Define Loss Function:

Reformulation:

Here e = [eq, e, ..

T
e; =Yyi — 0o — xi" 0,

€1
€2

€En

Consequently:

LUMS
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E(Qo, 9)

1 =1,2,...,n
m - _X1:
1

i B b B e
_y'n_ 1 _Xr.lT_
1
L(6y,0) 5

1 2

L(w) = 5 ||(y — Xw)|

Linear Regression

n

1
=35 Z (s — 00 — HTXi)2

1=1

.,en]? (column vector) where

o

Y2

| Yn_

1T
_§e

e

Model
o
0 —e=y — XWwW
W
Observations Inputs



Linear Regression

Solve Optimization Problem: (Analytical Solution employing Calculus)

1
mingnize L(w) = 5”(3’ — XW)”%

- Very beautiful, elegant function we have here!

We first write the loss function as

1

L(w) =5y = Xw) " (y - Xw)
1

L(w) = 5 (yTy —yI'Xw—w!Xy + WTXTXW)
1

L(w) = 5 (yTy —owl Xty + WTXTXW)

e To further solve this, let us quickly talk about the concept of a gradient
of a function.

LUMS
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Linear Regression
Solve Optimization Problem: (Analytical Solution employing Calculus)

Gradient of a function: Overview

e For a function f(x) that maps x € R% to R, we define a gradient (direec-
tional derivative) with respect to x as

[of of af 1" 4
VIx) = Oxr1 Oxs’ ~ Oxg <R

e Interpretation: Quantifies the rate of change along different directions.

Examples:
o f(x)=alx=x"a o f(x)=xTx o f(x)=x"Px
Vi(x)=a Vf(x) = 2x Vf(x) = 2Px

LUMS
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Linear Regression
Solve Optimization Problem: (Analytical Solution employing Calculus)

We have a loss function: L(w) = %(yTy —owl Xty + WTXTXW)
e Take gradient with respect to w as
1
VL(w) = 5( —2X"y 4+ 2X" Xw)

e Substituting it equal to zero yields

XT'Xw =Xy
= w=(X"X)"' X"y

e We have determined the weights for which LSE, MSE, RMSE or the norm

of the residual is minimized.

e This solution is referred to as least-squared solution as it minimizes the
squared error.

LUMS
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Linear Regression
So far and moving forward:

- We assumed that we know the structure of the model, that is, there is a linear
relationship between inputs and output.

- Number of parameters = dimension of the feature space + 1 (bias parameter)

- Formulated loss function using residual error.

- Formulated optimization problem and obtain analytical solution.

- Linear regression is one of the models for which we can obtain an analytical solution.

- We will shortly learn an algorithm to solve optimization problem numerically.

LUMS
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Polynomial Regression

Overview:

—- If the relationship between the inputs and output is not linear,
we can use a polynomial to model the relationship.

- We will formulate the polynomial regression model for single
feature regression problem.

- Polynomial Regression is often termed as Non-linear
Regression or Linear in Parameter Regression.

- We will also revisit the concept of ‘over-fitting'.

LUMS
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Polynomial Regression
Single Feature Regression:

Formulation:
e d =1, input x is a scalar.

e Model is a polynomial function of the input, that is,

e M is the degree of plynomial; characterized by M +1 coefficients 6,61, ...,0;.

e M is the Hyper-Parameter of the model and determines the complexity
of the model. For M = 1, we have a linear regression.

e We can use linear regression to find these coefficients by formulating the
input x and its powers using a vector-valued function given by

LUMS g(m):[l,x,az,---,x ]
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Single Feature Regression:

Formulation:

e With this notation, we can formulate model as -

Polynomial Regression

e Note that the model is linear in terms of parameters due to which Poly-
nomial Regression is termed as Linear in Parameter Regression.

e Note that g(x) can be any function of z. For example, we can have g(z) = {

e For n data points (input, output), we can define residual error in a similar

way we computed for linear regression as follows:

LUMS
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€1
€2

_yl_
Y2

Yn

y

1z a7
1 xzy a3
1 x, 22

1

2 x

—, sin(2mx), =, e* ...

T

We have seen
this before.

&

We are capable
to solve this!



Polynomial Regression

Single Feature Regression:

Example (Ref: CB. Section 1.1): Input £(x)
X iy Process or
System
e Model is a polynomial function of degree M. Noise
e If M is not knwown, how do we choose it?
( Model ]
Process f(x) = sin(27x) L VoI J
Observations y=f(zx)+n ()
1t o 00
f(z)
- o)
Model f(z,0) =00+ 01z + 02> + ... + ;M °f

e We take n = 10.

LUMS

0
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Polynomial Regression

Single Feature Regression: [f(z)=sin(27x)

Example:

f(z)

v

A

f(z,0)

Underfitting:
Model is too
simple

LUMS
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f(xgg):90‘|‘91517—|-92.’172—|-—|—91.’]9M

Overfitting:
Model is too
complex




Polynomial Regression
Single Feature Regression:

Example: g |
e What’s happening with the increase in M? Overﬁtting f(z)

e Model is fitting to the data, not the actual true function. f(z,0)or 1

~

e For M =9, we have zero residual error, that is, y = f(x, ).

e Is this a good solution?

e No! The model is oscillating wildly and is not close to the true function.

e In this toy example, we had informtion about !
the true function and therefore we can conclude
that M =9, is not a good model to fit the data.

= Training
—— Validation

e How to choose model order M or How do we tell
if a model is overfitting when we do not have
knowledge about the true process/function?

Solution 1:
e Recall: Train-Validation Split. Overfitting causes
poor generalization performance, that is, large

Good choice

05 of M

ERrms

LUMS error on the testing or validation data. 0 3w 6 9
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Polynomial Regression
Single Feature Regression:

Example:

e Let’s pose another question!

e VM = 3 degree polynomial is a special case of M = 9 degree polynomial.

e Why M =9 gives us poor performance?

e Coeflicients magnitude increases with M.

0.35

e ) = 3 solution cannot be recovered from -1.27 7.99 232.37
M =9 soltuion by setting the remaining '%3 gg Z;ggéégi’
weights equal to zero. . —231639.30

e 10 coefficients are tuned for 10 data-points 640042.26
when M = 9. -1061800.52

1042400.18
-557682.99
125201.43

LUMS
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Polynomial Regression
Single Feature Regression:

How to Handle Overfitting?

The polynomial degree M is the hyper-parameter of our model, like we had k in kNN,
and controls the complexity of the model.

If we stick with M=3 model, this is the restriction on the number of parameters.

We encounter overfitting for M=q because we do not have sufficient data.
Solution 2: Take more data points to avoid over-fitting.

0 . 0 ]

T xr

LUMS Solution 3: Regularization

A Not-for-Profit University
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Regularization

Regularization overview:

The concept is broad but we will see in the context of linear regression or polynomial
regression which we formulated as linear regression.

Encourages the wmodel coefficients to be small by adding a penalty term to the ervor.
We had the loss function of the following form that we minimize to find the coefficients:

1 See linear reqgression
Iy — X0)]]2 I

minimize L£(0) = formulation.

0 2
We add a ‘penalty term’, known as reqularizer, in the loss function as

minigmize Lreg(0) = L(0) + AR(0)
el ™~

Regularized Loss function Regularizer

A > 0 maintains the trade-off between regularizer and the original loss
function as it controls the relative importance of the regulrization term.

LUMS
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Regularization

L2 Least-squares Regularization — Ridge Regression:

Since we require to discourage the model coefficients from reaching large values; we can

use the following simple regularizer:

1
R(6) = 5”9”3 Known as L? or ¢2 penalty
For this choice, regularized loss function becomes
.. 1 A
minimize  Lreg(6) = 5|y ~ X0 + 5 6]

This regularization term maintains a trade-off between ‘fit of the model to the data’
and ‘square of norm of the coefficients’.
- If model is fitted poorly, the first term is large.

- If coefficients have high values, the second term (penalty term) is large.

e Large ) penalizes coefficient values more.

Intuitive Interpretation: We want to minimize the error while

LUMS keeping the norm of the coefficients bounded.
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Regularization

L2 Least-squares Regularization — Ridge Regression:

- Regularized loss function is still quadratic, and we can find closed form solution.

1

A
We have a loss function: Lyeg(0) = §||(y —X0)||5 + §||9||%

e Take gradient with respect to 6 as

VLieg(0) = =(—2X"y + 2X"X6 + 2)0)

DO | =

e Substituting it equal to zero yields
X'X0+ 20 =X"y = (XTX + A1)0 = X"y
= 0= (X"X + )" XTy
e We have a solution of the ridge regression:

O(\) = (XTX 4+ A1)

XTy

e )\ = (0, we have non-regularized solution. e )\ = 00, the solution is a zero vector.

LUMS
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Regularization

L2 Least-squares Regularization — Ridge Regression:
Example: ¢ Too small \: no regularization. e Too large A\: no weightage to the data.

e In practice, we use very small value of A and therefore it is convenient to
work with In A and compute it as A = e!™*.

0 1 0 1

x r

No regularization Too much regularization

LUMS
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Regularization
L2 Least-squares Regularization — Ridge Regression:
Example:

e )\ restricts the coeflicients from exploding as we have included the square
of the norm of the coefficients in the loss function being minimized.

0.35 | . .
232.37 4.74 -0.03 Validation
-5321.83 0.77 -0.06 Test |
48568.31 31.97 -0.05
-231639.30 -3.89 -0.03 z
640042.26 5528  -0.02 Sl /
-1061800.52 41.32 -0.01
1042400.18 4595 -0.00
-557682.99 91.53 0.00
125201.43 72.68 0.01 0 (35 = — oy >

e )\ is a hypermater of the model and we learn it in practice using the
validation data.

LUMS
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Regularization

L2 Least-squares Regularization — Ridge Regression:
Graphical Visualization:

0 = [0, 6], we assume we have two coefficients: 6; and 65.

We have a loss function: £ (8) = 1||(y —X0)||5 +

—1|@
= 10113
e Good value of A helps us in avoiding overfitting.
e Irrelevant features get small but non-zero value

in the regularized solution.

e Ideally, we would like to assign zero weight
to the irrelevant features.

LUMS
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Regularization

L1 Least-squares Regularization — Lasso Regression

e Use L' or /! penalty instead, that is, R(0) = [|6]l, = ) |x; Graphical Visualization:
) 92

e For this choice, regularized loss function becomes 1
: -y — X6)|

L 1
mlmgnlze Lreg(0) = 5”(37 — X9)||§ + 101

e This regularization is referred to as
least absolute shrinkage and selection operator (Lasso).

e The intersection is at the corners of the diamond.

e Lasso regression gives us sparse solution. j
‘ >

LUMS
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Regularization

Elastic Net Regression, L! vs L?

Ridge: Error + X times (sum of squares of coefficients)
Lasso: Error + A times (sum of absolute values of the coefficients)

Lasso optimization: computationally expensive than ridge regression.

Due to the corners included in the solution, regularized solution will have
some weights qual to zero.

e Solution is sparse in general, and is therefore biased.

Elastic Net Regression: Hybrid version; both L1 and Lo penalties.

.. 1 A
minimize Lreg(0) = §||(y —X0)||5 + Mi||0]1 + 72||9||§

Ridge and Lasso are special cases of elastic net regression.

Combines the strength of both but require tuning of hyperparameters \;
and Ao using validation data.

LUMS
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