

AI-501 Mathematics for AI

Regression, Linear, Polynomial, and Regularization

Zubair Khalid School of Science and Engineering

https://www.zubairkhalid.org/ai501_2024.html

Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

<u>Regression:</u> Quantitative Prediction on a continuous scale

- Given a data sample, predict a numerical value

Here, PROCESS or SYSTEM refers to any underlying physical or logical phenomenon which maps our input data to our observed and noisy output data.

A Not-for-Profit University

Examples:

<u>Single Feature:</u>

- Predict score in the course given the number of hours of effort per week.
- Establish the relationship between the monthly e-commerce sales and the advertising costs.

<u>Multiple Feature:</u>

- Studying operational efficiency of machine given sensors (temperature, vibration) data.
- Predicting remaining useful life (RUL) of the battery from charging and discharging information.
- Estimate sales volume given population demographics, GDP indicators, climate data, etc.
- Predict crop yield using remote sensing (satellite images, gravity information).
- Dynamic Pricing or Surge Pricing by ride sharing applications (Uber).
- Rate the condition (fatigue or distraction) of the driver given the video.
- Rate the quality of driving given the data from sensors installed on car or driving patterns.

Model Formulation and Setup:

<u>True Model</u>:

We assume there is an inherent but **unknown** relationship between input and output.

$\mathbf{y} = f(\mathbf{x}) + n$

<u>Goal:</u> Given noisy observations, we need to estimate the unknown functional relationship as accurately as possible.

► X

Model Formulation and Setup:

- Single Feature Regression, Example:

f(x) = 4.2 + 2.4x

Model Formulation and Setup:

- Assume that our model is $\hat{f}(\mathbf{x}, \boldsymbol{\theta})$, characterized by the parameter(s) $\boldsymbol{\theta}$.
- Model $f(\mathbf{x}, \boldsymbol{\theta})$ has
 - A structure (e.g., linear, polynomial, inverse).
 - Paramaters in the vector $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_M].$

• Our model error is
$$e = y - \hat{y}$$

• LUMS
A Not-for-Profit University

Overview:

- Second learning algorithm of the course
- Scalar output is a linear function of the inputs
- Different from KNN: Linear regression adopts a modular approach which we will use most of the times in the course.
 - Select a model
 - Defining a loss function
 - Formulate an optimization problem to find the model parameters such that a loss function is minimized.
 - Employ different techniques to solve optimization problem or minimize loss function.

Model:

What is Linear?

We have $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$

•
$$d = 1$$
 $\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$ Line.

•
$$d = 2$$
 $\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$ Plane

•
$$d$$
 $\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$ Hyper-plane in \mathbf{R}^{d+1}

For different θ_0 and θ , we have different hyper-planes. How do we find the 'best' line?

What do we mean by 'best'?

Model:

We have $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$

Model is a linear function of the features, that is,

$$\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \sum_{i=1}^d \theta_i x_i = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

• Linear structure.

- Model Paramaters: θ_0 and $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_d]$.
 - θ_0 is bias or intercept.
 - $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_d]$ represents the weights or slope.
 - θ_i quantifies the contribution of *i*-th feature x_i .

Define Loss Function:

- Loss function should be a function of model parameters.
- For input **x**, our model error is $e = y \hat{y} = y \hat{f}(\mathbf{x}, \boldsymbol{\theta}) = y \theta_0 \boldsymbol{\theta}^T \mathbf{x}$.

• *e* is also termed as residual error as it is the difference between observed value and predicted value.

Define Loss Function:

• For $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$, we have

$$e_i = y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i}, \quad i = 1, 2, \dots, n$$

• Using residual error, we can define different loss functions:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \sum_{i=1}^n \left(y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i} \right)^2$$

Least-squared error (LSE)

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i} \right)^2$$

Mean-squared error (MSE)

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2}$$

Root Mean-squared error (RMSE)

- One minimizer for all loss functions.

Define Loss Function:

• We minimize the following loss function:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^n (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2$$

• We have an **optimization problem**: find the parameters which minimize the loss function. We write optimization problem (with no constraints) as

$$\underset{\theta_0,\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}(\theta_0,\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^n \left(y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i} \right)^2$$

Factor $\frac{1}{2}$ is added to make the formulation mathematically more convenient.

How to solve?

- Analytically: Determine a critical point that makes the derivtive (if it exists) equal to zero.
- Numerically: Solve optimization using some algorithm that iteratively takes us closer to the critical point minimizing objective function.

Define Loss Function:

Reformulation:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^n \left(y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x}_i \right)^2 = \frac{1}{2} \mathbf{e}^T \mathbf{e}$$

Here $\mathbf{e} = [e_1, e_2, \dots, e_n]^T$ (column vector) where

$$e_i = y_i - \theta_0 - \mathbf{x_i}^T \boldsymbol{\theta}, \quad i = 1, 2, \dots, n$$

Model

Observations

Inputs

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\mathbf{w})\|_2^2$$

Solve Optimization Problem: (Analytical Solution employing Calculus)

$$\underset{\mathbf{w}}{\text{minimize}} \quad \mathcal{L}(\mathbf{w}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X} \mathbf{w}) \|_2^2$$

- Very beautiful, elegant function we have here!

We first write the loss function as

$$\begin{aligned} \mathcal{L}(\mathbf{w}) &= \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w}) \\ \mathcal{L}(\mathbf{w}) &= \frac{1}{2} (\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}) \\ \mathcal{L}(\mathbf{w}) &= \frac{1}{2} (\mathbf{y}^T \mathbf{y} - 2 \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}) \end{aligned}$$

• To further solve this, let us quickly talk about the concept of a gradient of a function.

Solve Optimization Problem: (Analytical Solution employing Calculus)

Gradient of a function: Overview

• For a function $f(\mathbf{x})$ that maps $\mathbf{x} \in \mathbf{R}^d$ to \mathbf{R} , we define a gradient (directional derivative) with respect to \mathbf{x} as

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]^T \in \mathbf{R}^d$$

• Interpretation: Quantifies the rate of change along different directions.

Examples:

• $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = \mathbf{x}^T \mathbf{a}$ • $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ • $f(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x}$ • $\nabla f(\mathbf{x}) = \mathbf{a}$ • $\nabla f(\mathbf{x}) = 2\mathbf{x}$ • $\nabla f(\mathbf{x}) = 2\mathbf{P} \mathbf{x}$

Solve Optimization Problem: (Analytical Solution employing Calculus)

We have a loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} \left(\mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right)$$

• Take gradient with respect to **w** as

$$\nabla \mathcal{L}(\mathbf{w}) = \frac{1}{2} \left(-2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \mathbf{w} \right)$$

• Substituting it equal to zero yields

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\Rightarrow \mathbf{w} = \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y}$$

- We have determined the weights for which LSE, MSE, RMSE or the norm of the residual is minimized.
- This solution is referred to as least-squared solution as it minimizes the squared error.

So far and moving forward:

- We assumed that we know the structure of the model, that is, there is a linear relationship between inputs and output.
- Number of parameters = dimension of the feature space + 1 (bias parameter)
- Formulated loss function using residual error.
- Formulated optimization problem and obtain analytical solution.
- Linear regression is one of the models for which we can obtain an analytical solution.
- We will shortly learn an algorithm to solve optimization problem numerically.

Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

Overview:

- If the relationship between the inputs and output is **not** linear, we can use a polynomial to model the relationship.
- We will formulate the polynomial regression model for single feature regression problem.
- Polynomial Regression is often termed as Non-linear
 Regression or Linear in Parameter Regression.
- We will also revisit the concept of 'over-fitting'.

Single Feature Regression:

Formulation:

- d = 1, input x is a scalar.
- Model is a polynomial function of the input, that is,

$$\hat{f}(x,\boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_M x^M = \sum_{i=0}^M \theta_i x^i$$

- *M* is the degree of plynomial; characterized by M+1 coefficients $\theta_0, \theta_1, \ldots, \theta_M$.
- M is the Hyper-Parameter of the model and determines the complexity of the model. For M = 1, we have a linear regression.
- We can use linear regression to find these coefficients by formulating the input x and its powers using a vector-valued function given by

$$\boldsymbol{g}(x) = \begin{bmatrix} 1, x, x^2, \cdots, x^M \end{bmatrix}^T$$

Single Feature Regression:

Formulation:

• With this notation, we can formulate model as

$$\hat{f}(x, \boldsymbol{\theta}) = \boldsymbol{g}(x)^T \boldsymbol{\theta}$$

- Note that the model is linear in terms of parameters due to which Polynomial Regression is termed as Linear in Parameter Regression.
- Note that $\boldsymbol{g}(x)$ can be any function of x. For example, we can have $\boldsymbol{g}(x) = \left[\frac{1}{x}, \sin(2\pi x), x^2, e^x \dots\right]^T$
- For *n* data points (input, output), we can define residual error in a similar way we computed for linear regression as follows:

Single Feature Regression:

Example (Ref: CB. Section 1.1):

- Model is a polynomial function of degree M.
- If M is not known, how do we choose it?

Observations

u = f(r) + n

Model

y = f(x) + n

 $\hat{f}(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_i x^M$

• We take n = 10.

(CB) Pattern Recognition and Machine Learning, Christopher M. Bishop

Single Feature Regression:

Example:

- What's happening with the increase in M? Overfitting
 - Model is fitting to the data, not the actual true function.
 - For M = 9, we have zero residual error, that is, $y = \hat{f}(x, \theta)$.
 - Is this a good solution?
 - No! The model is oscillating wildly and is not close to the true function.
- In this toy example, we had information about the true function and therefore we can conclude that M = 9, is not a good model to fit the data.
- How to choose model order M or How do we tell if a model is overfitting when we do not have knowledge about the true process/function?

Solution 1:

• Recall: Train-Validation Split. Overfitting causes

poor generalization performance, that is, large error on the testing or validation data.

Single Feature Regression:

Example:

- Let's pose another question!
- M = 3 degree polynomial is a special case of M = 9 degree polynomial.
 - Why M = 9 gives us poor performance?
- Coefficients magnitude increases with M.
- M = 3 solution cannot be recovered from M = 9 solution by setting the remaining weights equal to zero.
- 10 coefficients are tuned for 10 data-points when M = 9.

		M = 0,	M = 1,	M = 3,	M = 9
$oldsymbol{ heta} =$	$\left[\theta_{0} \right]$	0.19	0.82	0.31	0.35
	$ heta_1 $		-1.27	7.99	232.37
	θ_2			-25.43	-5321.83
	θ_3			17.37	48568.31
	θ_4				-231639.30
	θ_5				640042.26
	θ_6			-	1061800.52
	θ_7				1042400.18
	θ_8				-557682.99
	θ_9				125201.43

Single Feature Regression:

How to Handle Overfitting?

A Not-for-Profit University

- The polynomial degree M is the hyper-parameter of our model, like we had k in kNN, and controls the complexity of the model.
- If we stick with M=3 model, this is the restriction on the number of parameters.
- We encounter overfitting for M=9 because we do not have sufficient data.

Solution 2: Take more data points to avoid over-fitting.

Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

Regularization overview:

- The concept is broad but we will see in the context of linear regression or polynomial regression which we formulated as linear regression.
- Encourages the model coefficients to be small by adding a penalty term to the error.
- We had the loss function of the following form that we minimize to find the coefficients:

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2$$

See linear regression formulation.

- We add a 'penalty term', known as regularizer, in the loss function as

• $\lambda \geq 0$ maintains the trade-off between regularizer and the original loss function as it controls the relative importance of the regulrization term.

L² Least-squares Regularization – Ridge Regression:

- Since we require to discourage the model coefficients from reaching large values; we can use the following simple regularizer:

$$\mathcal{R}(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$
 Known as L^2 or ℓ^2 penalty

- For this choice, regularized loss function becomes

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

- This regularization term maintains a trade-off between 'fit of the model to the data' and 'square of norm of the coefficients'.
 - If model is fitted poorly, the first term is large.
 - If coefficients have high values, the second term (penalty term) is large.
 - Large λ penalizes coefficient values more.

Intuitive Interpretation: We want to minimize the error while keeping the norm of the coefficients bounded.

<u>L² Least-squares Regularization – Ridge Regression:</u>

- Regularized loss function is still quadratic, and we can find closed form solution.

We have a loss function: $\mathcal{L}_{reg}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$

• Take gradient with respect to $\boldsymbol{\theta}$ as

$$\nabla \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \left(-2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + 2\lambda \boldsymbol{\theta} \right)$$

• Substituting it equal to zero yields

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y} \Rightarrow (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y}$$

 $\Rightarrow \boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

• We have a solution of the ridge regression:

$$oldsymbol{ heta}(\lambda) = \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}
ight)^{-1} \mathbf{X}^T \mathbf{y}$$

• $\lambda = 0$, we have non-regularized solution. • $\lambda = \infty$, the solution is a zero vector. • $\lambda = \infty$, the solution is a zero vector.

L² Least-squares Regularization – Ridge Regression:

Example: • Too small λ : no regularization. • Too large λ : no weightage to the data.

• In practice, we use very small value of λ and therefore it is convenient to work with $\ln \lambda$ and compute it as $\lambda = e^{\ln \lambda}$.

No regularization

Too much regularization

Regularization <u>L² Least-squares Regularization – Ridge Regression:</u> <u>Example:</u>

• λ restricts the coefficients from exploding as we have included the square of the norm of the coefficients in the loss function being minimized.

		$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$oldsymbol{ heta} =$	$\left[\theta_{0}\right]$	0.35	0.35	0.13
	$\left \stackrel{\circ}{\theta_1} \right $	232.37	4.74	-0.05
	$\left \theta_{2} \right $	-5321.83	-0.77	-0.06
	$\left \theta_{3} \right $	48568.31	-31.97	-0.05
	$ \theta_4 $	-231639.30	-3.89	-0.03
	$ \theta_5 $	640042.26	55.28	-0.02
	$ \theta_6 $	-1061800.52	41.32	-0.01
	$ \theta_7 $	1042400.18	-45.95	-0.00
	$ \theta_8 $	-557682.99	-91.53	0.00
	θ_9	125201.43	72.68	0.01

• λ is a hypermater of the model and we learn it in practice using the validation data.

<u>L² Least-squares Regularization – Ridge Regression:</u> <u>Graphical Visualization:</u>

 $\boldsymbol{\theta} = [\theta_1, \theta_2]$, we assume we have two coefficients: θ_1 and θ_2 .

We have a loss function:
$$\mathcal{L}_{reg}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

- Good value of λ helps us in avoiding overfitting.
- Irrelevant features get small but non-zero value in the regularized solution.
- Ideally, we would like to assign zero weight to the irrelevant features.

L¹ Least-squares Regularization – Lasso Regression

- Use L^1 or ℓ^1 penalty instead, that is, $\mathcal{R}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1 = \sum |x_i|$
- For this choice, regularized loss function becomes

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$$

- This regularization is referred to as least absolute shrinkage and selection operator (Lasso).
- The intersection is at the corners of the diamond.
 - Lasso regression gives us sparse solution.

Elastic Net Regression, L¹ vs L²

- Ridge: Error + λ times (sum of squares of coefficients)
- Lasso: Error + λ times (sum of absolute values of the coefficients)
- Lasso optimization: computationally expensive than ridge regression.
- Due to the corners included in the solution, regularized solution will have some weights qual to zero.
 - Solution is sparse in general, and is therefore biased.
- Elastic Net Regression: Hybrid version; both L_1 and L_2 penalties.

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \|_2^2 + \lambda_1 \|\boldsymbol{\theta}\|_1 + \frac{\lambda_2}{2} \|\boldsymbol{\theta}\|_2^2$$

- Ridge and Lasso are special cases of elastic net regression.
- Combines the strength of both but require tuning of hyperparameters λ_1 and λ_2 using validation data.

