2 s
Re‘q(aliibﬁ' v PA cdichon ‘( o VMAI~‘>I¢ on m*nwov»ﬂ ?'\‘
——ses b
Scale

e s ”:T}L__,,_

2 Ascin | Fesosid
fird ; n P\Jt
anll) 2]
a[lo] = @ il v a[ll] _ww” [2] —> y(l)
>< o)
[0] ) [1] (2] y

2 » . ‘
- IL'( ) L llJ2 &2 w )]

2,2

Al-501 Mathematics for Al

CTesSHre

we

w |
e+ F‘ll‘

Singular Value Decomposition and Spaces

Zubair Khalid
School of Science and Engineering

LUMS

A Not-for-Profit University

https://www.zubairkhalid.org/ai501 2024.html



https://www.zubairkhalid.org/ee514_2022.html

Outline
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Eigenvalue Decomposition (EVD)

Eigenvectors and Eigenvalues:

For square matrices, eigenvectors and eigenvalues are vectors and numbers represent the
eigen-decomposition of a matrix; analyzes the structure of this matrix.

For a matrix A € R**"

a vector ¢ € R™, q # 0, is called an eigenvector of A if

A q — A q Eigenvalue Equation

- A is referred to as an eigenvalue of A associated with the eigenvector ¢

LUMS
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Eigenvalue Decomposition (EVD)

Linear transformation interpretation:

qg € R" AgeR" Only scaling

Graphically Aq = \g
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Eigenvalue Decomposition (EVD)

Eigenvectors and Eigenvalues:

How to compute eigenvalues?

Ag= g = Aqg—XAg=0

p(A) = det(Aqg — A\q)=0 Characteristic polynomial; degree n

n eigenvalues Figenspectrum: set of eigenvalues
n eigenvectors Eigenspace: span of eigenevectors

LUMS
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Eigenvalue Decomposition (EVD)

Eigenvectors and Eigenvalues:

Ag=Xq
n eigenvalues A1, A2, .o A DY
0 A
n eigenvectors qi, q2,---,qn € R" A= S
0 0
A =M q, Ag=>Xaqg, ... (@)1 (g2)1

AQ = QA

A=QAQ!

Eigen-decomposition
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Eigenvalue Decomposition

What does eigenvector and eigenvalues reveal about A?

Linear Transformation

T Ax

\ 4
\ 4

Linear Transformation Interpretation in terms of Eigen-decomposition of the Matrix

r e R" Az
1 @' | A @ ~
Transformation Scaling Inverse Transformation
(Change of Basis) (In new Basis) (Change of Basis)

LUMS
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Eigenvalue Decomposition

Linear Transformation Interpretation in terms of Eigen-decomposition of the Matrix -
Visualization

A Linear Transformation
q2
\/ ¢ /\\'_2 q2 )\1 qi1
A
> q
Transformation l Q—l Q 1 Inverse Transformation
(Change of Basis) (Change of Basis)
€9
A
€1
Scaling

(In new Basis)
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Eigenvalue Decomposition

Eigen-decomposition of the Matrix - Example

—
A = 2.0
Ao = 0.5
det(A) = 1.0

a2 LUMS
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Eigenvalue Decomposition

Eigen-decomposition of the Matrix - Example

A = 0.0
Ay = 2.0
det(A) = 0.0

LUMS
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Eigenvalue Decomposition

Determinant in terms of Eigenvalues

e Determinant of a matrix A € R"*" is given by the product of eigenvalues,
that is,

det(A) = det(QAQ ™) = det(Q) det(A) det(Q 1)

det(A) = det(QAQ™") = det(Q (H A ) det(Q

T

det(A) = [ [\

e If one of the eigenvalues is zero, determinant of the matrix is zero.

e I encourage you to connect this with the interpretation of determinant
and (eigenvectors, eigenvalues).
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Eigenvalue Decomposition (EVD)

EVD of Inverse Matrix:

e Matrix inverse A~! has same eigenvectors but eigenvalues are given by
inverse of the eigenvalues of the original matrix A.

e This can be shown in multiple ways. Let’s use eigenvalue equation to show
this.

For a matrix A € R**"

Aqg=M\q Eigenvalue Equation

e Assuming A is invertible, that is, all eigenvalues are non-zero.

1 _
A 1Aqg=)A"1Y —g=A"1q
A
This implies ¢ is an eigenvector of A~! with associated eigenvalue %

LUMS
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Eigenvalue Decomposition

Power of a matrix

AA = A2 = QAQ ! QAQ™! = QA2Q !
An — QATLQ—].

e | encourage you to connect this with the interpretation of linear transfor-
mation using EVD of a matrix.
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Eigenvalue Decomposition

Zero eigenvalues; Columns of A are not linearly independent

e If one of the eigenvalues is zero and ¢ is an associated eigenvector.
Ag=Xq =0

e It simply follows from the definition of linear independence that the columns
are not linearly independent since Aq represents the linear combination of
columns of A.

LUMS
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Eigenvalue Decomposition

Eigenvalues of a Symmetric Matrix

e (Spectral Theorem) For a symmetric matrix A € R™*", there exists an
orthonormal basis of the corresponding vectors space cossisting of eigen-
vectors of A and each eigenvalue is real.

A=QAQ! Since A = AT, we have (Q™' = Q7
AT = (@) AQ7 {

Orthonormal matrix

e Summary: For a symmetric matrix, eigenvectors are orthonromal and
eigenvalues are real.

LUMS
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Outline

- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)

- Formulation

- Interpretation

- Application examples

- Column space and Null Space
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Positive/Negative Definite/Semi-Definite Matrices

Definition:

For a matrix A € R"*", if
i Ax >0

2P Az > 0

T Ax <0

2l Az < 0

LUMS

A Not-for-Profit University
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VereR"

VreR"

VereR"

A is positive semi-definite (PSD)

A is positive definite (PD)

A is negative semi-definite (NSD)

A is negative definite (ND)



Positive Definite and Semi-Definite Matrices

Interpretation: A
A is positive semi-definite (PSD)

!l Az > 0 \

o Let y= Ax A

e y is a linear transformation defined by the matrix A. \

T \

e 27y > 0 implies angle between = and vy is less than or equal to 5 - ]

\
o 2Ty > 0 implies angle between x and linearly transformed z, that is, Az \\

is less than or equal to 7. \

Graphically, a vector x when transformed by a matrix A, that is, Ax can be
anywhere in the green region including the dashed boundary where 7 Az = 0

LUMS
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Positive Definite and Semi-Definite Matrices

Interpretation: A
A is positive definite (PD)

' Az > 0 \

o Let y= Ax A

e y is a linear transformation defined by the matrix A. \

T \

e 27y > 0 implies angle between x and vy is less than 5 "
\

o 2Ty > 0 implies angle between x and linearly transformed z, that is, Az \\
T

is less than Z. \

2

Graphically, a vector x when transformed by a matrix A, that is, Ax can be
anywhere in the green region excluding the dashed boundary where 7 Az = 0
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Positive Definite and Semi-Definite Matrices

Eigenvalues of symmetric PSD/PD matrix:

For a symmetric and PD matrix A, eigenvalues are positive.
How?

e We already know that the eigenvalues of a symmetric matrix are real.

e For a PD symmetric, we require 11 A > ()

e If we take x = ¢, where ¢ is an eigenvector with an associated eigenvalue
A

¢FAG>0=A¢g"q¢>0=A|[¢glz3>0=)X>0

Similarly, we can show the following:

For a symmetric and PSD matrix A, eigenvalues are non-negative.
For a symmetric and NSD matrix A, eigenvalues are non-positive.

For a symmetric and ND matrix A, eigenvalues are negative.

LUMS
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Outline

- Positive/negative definite and semi-definite matrices

- Singular Value Decomposition (SVD)
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- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)

- Formulation

- Interpretation
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- Column space and Null Space
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Singular Value Decomposition

Overview:

- The singular value decomposition (SVD) of a matrix is a central matrix decomposition
method in linear algebra.

- It has been referved to as the “fundamental theorem of linear algebra” (Strang, 1993)

because it can be applied to all matrices, not only to square matrices, and it always
exists.

e For A € R™*"™, we have

re R" : A émeRm

e SVD explains the underlying geometry of this linear transformation.

LUMS
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Singular Value Decomposition

Formulation:

e For any matrix A € R"*"™, we have a singular value decomposition (SVD)

given by

A=UXV?’

e Matrix U € R™*™ is an orthonormal matrix.

e Matrix V € R™ "™ is an orthonormal matrix.

e Matrix ¥ € R"™*™ is a (special) diagonal matrix.

m<n ) m=n
C 0 0 0] ‘61 0
0 o9 0 0 0 B 92
Y = _ Y= :
X 0 0 )
0 0 T 0 0 00

LUMS
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Singular Value Decomposition

Formulation:

A=UXV?’

e Columns of U are referred to as left singular vectors of matrix A.

e Columns of V' are referred to as right singular vectors of matrix A.

® 01, 02,...,0min(m,n) are singular values of matrix A, which are (usually)
indexed such that

012022 ... 2 Omin(m,n) = 0

LUMS
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Singular Value Decomposition

How to Compute SVD?

e For a matrix A € R™*", we define a matrix G = AAT.

e Using A=UX V7, we can write G as

G=UXVIvxlul =uxzx!tyu?

What is special about matrix G?

e (7 is symmetric by definition.

e G is positive semi-definite. How? You are fully equipped to show this.

We note that X7 is a diagonal matrix of size m x m.

e Eigenvalue decomposition of GG gives columns of U as eigenvectors and
diagonal entries of ¥X7 as eigenvalues.

In other words, left singular vectors of A are eigenvectors of AAT and
02 = \ (eigenvalue of AAT). Furthermore, A > 0 since G = AAT is PSD.

Eigenvalue decomposition of AA” gives m left singular vectors of A and first m

LUMS singular values.

A Not-for-Profit University




Singular Value Decomposition

How to Compute SVD?

e Now we define a matrix G = AT A.

e Using A=UX V", we can write G as

G=vVvxTyTuzsvi=yvxi'yy?

What is special about matrix G7

e (5 is symmetric by definition.

e G is positive semi-definite. How? You are fully equipped to show this.

We note that £7¥ is a diagonal matrix of size n x n.

e Eigenvalue decomposition of G gives columns of V as eigenvectors and
diagonal entries of 'Y as eigenvalues.

e In other words, right singular vectors of A are eigenvectors of AT A and
0?2 = X (eigenvalue of AT A). Furthermore, A > 0 since G is PSD.

Eigenvalue decomposition of AT A gives n right singular vectors of A and first
n singular values.

LUMS Now you can explain the non-negativity of the singular values.
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Singular Value Decomposition

SVD Summary

e Singular value decomposition (SVD) of a matrix A € R™*"™ is given by

A=UXV?’

e EVD of AAT gives U and first m singular values.

e EVD of AT A gives V and first n singular values.
e U and V are always orthogonal.
e SVD always exists.

e Singular values are non-negative, that is,

LUMS
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Singular Value Decomposition

Geometric Interpretation
r e R" Ar e R™

r € R" Ax e R™
> M —_— U >
Transformation
(Change of Basis)

Change of basis in R" Change of basis in R™

Scaling along the new basis by singular values.
e m < n - Drop the last n — m basis (impact of columns of zeros in X))

e m >n - Append m — n basis (impact of rows of zeros in X)

LUMS
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Singular Value Decomposition

Geometric Interpretation
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Singular Value Decomposition

1.5

Change of basis in R3

1.5
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Singular Value Decomposition

Rank of a Matrix:

e The rank of a matrix is equal to the number of non-zero singular values.

How? o Since AT A and A have the same rank and we know that the rank of any
square matrix equals the number of nonzero eigenvalues.

Application Example — Rank Estimation:
We use SVD for the estimation of rank while analyzing data. How?

e Suppose that we have n data points a1, as, ..., a,, all of which live in R™,
where n is much larger than m. Let A be the m x n matrix with columns
a1,0d92,...,0n.

e Assume that the the data points satisfy some linear relations, such that
ai,as,...,a, all lie in an r dimensional subspace of R™. Then we would
expect the matrix A to have rank r.

e If the data points are obtained from measurements with errors, then the
matrix A will probably have full rank m. But only r of the singular values
of A will be large, and the other singular values will be close to zero.

: LUM e Using SVD, we can can estimate an “approximate rank” of A by counting

S the number of singular values which are much larger than the others.
A Not-for-Profit University




Singular Value Decomposition

Application: Matrix Approximation

e A matrix A € R™*" can be decomposed using SVD as
min(m,n)

A= UEVT = Z ’U,iO'f,;U;'T
1=1

e If rank of a matrix is r < min(m,n), we can truncate the summationion
at r

T
E : T
A= U;0;U;
=l

e Using SVD formulation, we can define k£ rank approximation of the matrix
A by including first k£ singular vectors and associated singular values in
the representation, that is,

k
Ar Z ;o307 (k-rank approximation)
1=1

LUMS
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Column Space and Null Space

Column Space:

e For a matrix A € R™*"™ the column space, denoted by C(A), is the span
of the columns of A.

e If ay,as,...,a, € R™ are the columns of A, column space is given by

C(A) = span(ay,as, ..., a,)

C(A) = {Az|z € R™)

(all possible linear combinations of columns of A)

e In other words, column space is a linear transformation of every point in

R", that is,

rz e R"

A

e Consequently, C(A) is the subspace of R™.

e What is the dimension of column space C(A)?  Number of linearly independent columns of A=rank(A).

LUMS
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Column Space and Null Space

Null Space:

e For a matrix A € R™*", the null space, denoted by N (A), is the subspace
of R™ such that

N(A) ={z € R*|Az =0} (all points that are mapped to zero by matrix A

e In other words, null space is an inverse linear transformation of 0 € R™.

w r e R" . A é4x€Rm

r e N(A)

Az =0

e Nullity of the matrix, that is, the dimension of the null-space N (A) is

given by the following rank-nullity theorem (also known as rank-+nullity
theorem).

rank(A) + nullity(A) = number of columns of A
LUMS dim(C(A)) + dim(N(A)) = number of columns of A
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Column Space and Null Space

Example:

A =

=~ WO N =

Gk WD

e m=4,n=3
e C(A) is a subspace of R*.

e N(A) is a subspace of R5.

e Note that a third column is a sum of first two columns and therefore
number of linearly independent columns is equal to 2.

e Consequently, C(A) is a 2-dimensional subspace of R*.
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