

AI-501 Mathematics for AI

Singular Value Decomposition and Spaces

Zubair Khalid School of Science and Engineering

https://www.zubairkhalid.org/ai501 2024.html

Outline

- Eigenvalue Decomposition
 - · Eigenvectors, Eigenvalue overview
 - Formulation
 - Interpretation

Eigenvectors and Eigenvalues:

For square matrices, eigenvectors and eigenvalues are vectors and numbers represent the eigen-decomposition of a matrix; analyzes the structure of this matrix.

For a matrix $A \in \mathbf{R}^{n \times n}$

a vector $q \in \mathbf{R}^n$, $q \neq 0$, is called an eigenvector of A if

$$A q = \lambda q$$

Eigenvalue Equation

- λ is referred to as an eigenvalue of A associated with the eigenvector q

Linear transformation interpretation:

Graphically

Eigenvectors and Eigenvalues:

How to compute eigenvalues?

$$A q = \lambda q$$
 \Rightarrow $Aq - \lambda q = 0$

$$p(\lambda) = \det(Aq - \lambda q) = 0$$
 Characteristic polynomial; degree n

n eigenvalues Eigenspectrum: set of eigenvalues

n eigenvectors Eigenspace: span of eigenevectors

Eigenvectors and Eigenvalues:

$$A q = \lambda q$$

$$\lambda_1, \, \lambda_2, \dots, \lambda_n$$

$$n$$
 eigenvectors

$$q_1, q_2, \dots, q_n \in \mathbf{R}^n$$

$$A q_1 = \lambda_1 q_1, \quad A q_2 = \lambda_2 q_2, \dots$$

$$AQ = Q\Lambda$$

$$A = Q \Lambda Q^{-1}$$

Eigen-decomposition

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$Q = \begin{bmatrix} (q_1)_1 & (q_2)_1 & \dots & (q_n)_1 \\ (q_1)_2 & (q_2)_2 & \dots & (q_n)_2 \\ \vdots & \vdots & \ddots & \vdots \\ (q_1)_n & (q_2)_n & \dots & (q_n)_n \end{bmatrix}$$

What does eigenvector and eigenvalues reveal about A?

<u>Linear Transformation Interpretation in terms of Eigen-decomposition of the Matrix</u>

<u>Linear Transformation Interpretation in terms of Eigen-decomposition of the Matrix - Visualization</u>

Eigen-decomposition of the Matrix - Example

$$\lambda_1 = 2.0$$

$$\lambda_2 = 0.5$$

$$\det(\mathbf{A}) = 1.0$$

Eigen-decomposition of the Matrix - Example

Determinant in terms of Eigenvalues

• Determinant of a matrix $A \in \mathbf{R}^{n \times n}$ is given by the product of eigenvalues, that is,

$$\det(A) = \det(Q\Lambda Q^{-1}) = \det(Q) \det(\Lambda) \det(Q^{-1})$$
$$\det(A) = \det(Q\Lambda Q^{-1}) = \det(Q) \left(\prod_{i=1}^{n} \lambda_i\right) \frac{1}{\det(Q)}$$
$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

- If one of the eigenvalues is zero, determinant of the matrix is zero.
 - I encourage you to connect this with the interpretation of determinant and (eigenvectors, eigenvalues).

EVD of Inverse Matrix:

- Matrix inverse A^{-1} has same eigenvectors but eigenvalues are given by inverse of the eigenvalues of the original matrix A.
- This can be shown in multiple ways. Let's use eigenvalue equation to show this.

For a matrix $A \in \mathbf{R}^{n \times n}$

$$A q = \lambda q$$
 Eigenvalue Equation

• Assuming A is invertible, that is, all eigenvalues are non-zero.

$$A^{-1}A q = \lambda A^{-1}q$$
 $\frac{1}{\lambda}q = A^{-1}q$

This implies q is an eigenvector of A^{-1} with associated eigenvalue $\frac{1}{\lambda}$.

Power of a matrix

$$AA = A^2 = Q\Lambda Q^{-1} \ Q\Lambda Q^{-1} = Q\Lambda^2 Q^{-1}$$

$$A^n = Q\Lambda^n Q^{-1}$$

• I encourage you to connect this with the interpretation of linear transformation using EVD of a matrix.

Zero eigenvalues; Columns of A are not linearly independent

 \bullet If one of the eigenvalues is zero and q is an associated eigenvector.

$$A q = \lambda q = 0$$

• It simply follows from the definition of linear independence that the columns are not linearly independent since Aq represents the linear combination of columns of A.

Eigenvalues of a Symmetric Matrix

• (Spectral Theorem) For a symmetric matrix $A \in \mathbf{R}^{n \times n}$, there exists an orthonormal basis of the corresponding vectors space cossisting of eigenvectors of A and each eigenvalue is real.

$$A=Q\Lambda\,Q^{-1}$$
 Since $A=A^T$, we have $Q^{-1}=Q^T$
$$A^T=\left(Q^{-1}\right)^T\Lambda\,Q^T$$
 Orthonormal matrix

• Summary: For a symmetric matrix, eigenvectors are orthonromal and eigenvalues are real.

Outline

- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)
 - Formulation
 - Interpretation
 - Application examples
- Column space and Null Space

Positive/Negative Definite/Semi-Definite Matrices

Definition:

For a matrix $A \in \mathbf{R}^{n \times n}$, if

$$x^T A x > 0$$

$$\forall \ x \in \mathbf{R}^n$$

$$A$$
 is positive semi-definite (PSD)

$$x^T A x > 0$$

$$\forall x \in \mathbf{R}^n$$

$$x^T A x \le 0$$

$$\forall x \in \mathbf{R}^n$$

$$A$$
 is negative semi-definite (NSD)

$$x^T A x < 0$$

$$\forall \ x \in \mathbf{R}^n$$

A is negative definite (ND)

Positive Definite and Semi-Definite Matrices

Interpretation:

A is positive semi-definite (PSD)

$$x^T A x > 0$$

- Let y = Ax
 - y is a linear transformation defined by the matrix A.
- $x^T y \ge 0$ implies angle between x and y is less than or equal to $\frac{\pi}{2}$.
- $x^Ty \ge 0$ implies angle between x and linearly transformed x, that is, Ax is less than or equal to $\frac{\pi}{2}$.

Graphically, a vector x when transformed by a matrix A, that is, Ax can be anywhere in the green region including the dashed boundary where $x^TAx = 0$

Positive Definite and Semi-Definite Matrices

Interpretation:

A is positive definite (PD)

$$x^T A x > 0$$

- Let y = Ax
 - y is a linear transformation defined by the matrix A.
- $x^T y > 0$ implies angle between x and y is less than $\frac{\pi}{2}$.
- $x^Ty \ge 0$ implies angle between x and linearly transformed x, that is, Ax is less than $\frac{\pi}{2}$.

Graphically, a vector x when transformed by a matrix A, that is, Ax can be anywhere in the green region excluding the dashed boundary where $x^TAx = 0$

Positive Definite and Semi-Definite Matrices

Eigenvalues of symmetric PSD/PD matrix:

For a symmetric and PD matrix A, eigenvalues are positive.

How?

- We already know that the eigenvalues of a symmetric matrix are real.
- For a PD symmetric, we require $x^T Ax > 0$
- If we take x=q, where q is an eigenvector with an associated eigenvalue λ

$$q^T A q > 0 \Rightarrow \lambda q^T q > 0 \Rightarrow \lambda \|q\|_2^2 > 0 \Rightarrow \lambda > 0$$

Similarly, we can show the following:

For a symmetric and PSD matrix A, eigenvalues are non-negative.

For a symmetric and NSD matrix A, eigenvalues are non-positive.

For a symmetric and ND matrix A, eigenvalues are negative.

Outline

- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)

Outline

- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)
 - Formulation
 - Interpretation
 - Application examples
- Column space and Null Space

Overview:

- The singular value decomposition (SVD) of a matrix is a central matrix decomposition method in linear algebra.
- It has been referred to as the "fundamental theorem of linear algebra" (Strang, 1993) because it can be applied to all matrices, not only to square matrices, and it always exists.
- For $A \in \mathbf{R}^{m \times n}$, we have

• SVD explains the underlying geometry of this linear transformation.

Formulation:

• For any matrix $A \in \mathbf{R}^{m \times n}$, we have a singular value decomposition (SVD) given by

$$A = U \Sigma V^T$$

- Matrix $U \in \mathbf{R}^{m \times m}$ is an orthonormal matrix.
- Matrix $V \in \mathbf{R}^{n \times n}$ is an orthonormal matrix.
- Matrix $\Sigma \in \mathbf{R}^{m \times n}$ is a (special) diagonal matrix.

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Formulation:

$$A = U \Sigma V^T$$

- Columns of U are referred to as left singular vectors of matrix A.
- \bullet Columns of V are referred to as right singular vectors of matrix A.
- $\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)}$ are singular values of matrix A, which are (usually) indexed such that

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min(m,n)} \ge 0$$

How to Compute SVD?

- For a matrix $A \in \mathbf{R}^{m \times n}$, we define a matrix $G = AA^T$.
- Using $A = U \Sigma V^T$, we can write G as

$$G = U \Sigma V^T V \Sigma^T U^T = U \Sigma \Sigma^T U^T$$

- What is special about matrix G?
 - G is symmetric by definition.
 - G is positive semi-definite. How? You are fully equipped to show this.
- We note that $\Sigma\Sigma^T$ is a diagonal matrix of size $m\times m$.
- Eigenvalue decomposition of G gives columns of U as eigenvectors and diagonal entries of $\Sigma\Sigma^T$ as eigenvalues.
- In other words, left singular vectors of A are eigenvectors of AA^T and $\sigma^2 = \lambda$ (eigenvalue of AA^T). Furthermore, $\lambda \geq 0$ since $G = AA^T$ is PSD.

Eigenvalue decomposition of AA^T gives m left singular vectors of A and first m singular values.

How to Compute SVD?

- Now we define a matrix $G = A^T A$.
- Using $A = U \Sigma V^T$, we can write G as

$$G = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T$$

- What is special about matrix G?
 - G is symmetric by definition.
 - G is positive semi-definite. How? You are fully equipped to show this.
- We note that $\Sigma^T \Sigma$ is a diagonal matrix of size $n \times n$.
- Eigenvalue decomposition of G gives columns of V as eigenvectors and diagonal entries of $\Sigma^T \Sigma$ as eigenvalues.
- In other words, right singular vectors of A are eigenvectors of A^TA and $\sigma^2 = \lambda$ (eigenvalue of A^TA). Furthermore, $\lambda \geq 0$ since G is PSD.

Eigenvalue decomposition of $A^T A$ gives n right singular vectors of A and first n singular values.

LUMS
A Not-for-Profit University

Now you can explain the non-negativity of the singular values.

SVD Summary

• Singular value decomposition (SVD) of a matrix $A \in \mathbf{R}^{m \times n}$ is given by

$$A = U \Sigma V^T$$

- EVD of AA^T gives U and first m singular values.
- EVD of A^TA gives V and first n singular values.
- \bullet *U* and *V* are always orthogonal.
- SVD always exists.
- Singular values are non-negative, that is,

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{\min(m,n)} \ge 0$$

Geometric Interpretation

Scaling along the new basis by singular values.

- m < n Drop the last n m basis (impact of columns of zeros in Σ)
- m > n Append m n basis (impact of rows of zeros in Σ)

Geometric Interpretation

Geometric Interpretation - Example

$$A = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = U\Sigma V^{\top}$$

$$= \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$

Change of basis in \mathbb{R}^2

Append 1 more basis
(impact of a row of zeros in Σ)

Rank of a Matrix:

• The rank of a matrix is equal to the number of non-zero singular values.

How?

• Since A^TA and A have the same rank and we know that the rank of any square matrix equals the number of nonzero eigenvalues.

Application Example – Rank Estimation:

We use SVD for the estimation of rank while analyzing data. How?

- Suppose that we have n data points a_1, a_2, \ldots, a_n , all of which live in \mathbb{R}^m , where n is much larger than m. Let A be the $m \times n$ matrix with columns a_1, a_2, \ldots, a_n .
- Assume that the data points satisfy some linear relations, such that a_1, a_2, \ldots, a_n all lie in an r dimensional subspace of \mathbf{R}^m . Then we would expect the matrix A to have rank r.
- If the data points are obtained from measurements with errors, then the matrix A will probably have full rank m. But only r of the singular values of A will be large, and the other singular values will be close to zero.

Using SVD, we can estimate an "approximate rank" of A by counting the number of singular values which are much larger than the others.

Application: Matrix Approximation

• A matrix $A \in \mathbf{R}^{m \times n}$ can be decomposed using SVD as

$$A = U \Sigma V^T = \sum_{i=1}^{\min(m,n)} u_i \sigma_i v_i^T$$

• If rank of a matrix is $r \leq \min(m, n)$, we can truncate the summationion at r

$$A = \sum_{i=1}^{r} u_i \sigma_i v_i^T$$

• Using SVD formulation, we can define k rank approximation of the matrix A by including first k singular vectors and associated singular values in the representation, that is,

$$Approx \sum_{i=1}^k u_i \sigma_i v_i^T$$
 (k-rank approximation)

Outline

- Positive/negative definite and semi-definite matrices
- Singular Value Decomposition (SVD)
 - Formulation
 - Interpretation
 - Application examples
- Column space and Null Space

Column Space and Null Space

Column Space:

- For a matrix $A \in \mathbf{R}^{m \times n}$, the column space, denoted by $\mathcal{C}(A)$, is the span of the columns of A.
- If $a_1, a_2, \ldots, a_n \in \mathbf{R}^m$ are the columns of A, column space is given by

$$\mathcal{C}(A) = \operatorname{span}(a_1, a_2, \dots, a_n)$$

$$\mathcal{C}(A) = \{Ax | x \in \mathbf{R}^n\}$$

 $C(A) = \{Ax | x \in \mathbf{R}^n\}$ (all possible linear combinations of columns of A)

• In other words, column space is a linear transformation of every point in \mathbf{R}^n , that is,

- Consequently, C(A) is the subspace of \mathbf{R}^m .
- What is the dimension of column space $\mathcal{C}(A)$? Number of linearly independent columns of $A=\operatorname{rank}(A)$.

Column Space and Null Space

Null Space:

• For a matrix $A \in \mathbf{R}^{m \times n}$, the null space, denoted by $\mathcal{N}(A)$, is the subspace of \mathbf{R}^n such that

$$\mathcal{N}(A) = \{x \in \mathbf{R}^n \mid Ax = 0\}$$
 (all points that are mapped to zero by matrix A

• In other words, null space is an inverse linear transformation of $0 \in \mathbf{R}^m$.

• Nullity of the matrix, that is, the dimension of the null-space $\mathcal{N}(A)$ is given by the following rank-nullity theorem (also known as rank+nullity theorem).

$$rank(A) + nullity(A) = number of columns of A$$

 $\dim(\mathcal{C}(A)) + \dim(\mathcal{N}(A)) = \text{ number of columns of } A$

Column Space and Null Space

Example:

$$A = \left[egin{array}{cccc} 1 & 1 & 2 \ 2 & 1 & 3 \ 3 & 1 & 4 \ 4 & 1 & 5 \end{array}
ight] egin{array}{cccc} ullet \ m=4, \ n=3 \ ullet \ \mathcal{C}(A) \ ext{is a subspace of } \mathbf{R}^4. \ ullet \ \mathcal{N}(A) \ ext{is a subspace of } \mathbf{R}^3. \end{array}$$

- m = 4, n = 3

- Note that a third column is a sum of first two columns and therefore number of linearly independent columns is equal to 2.
- Consequently, C(A) is a 2-dimensional subspace of \mathbb{R}^4 .