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Outline

- The Curse of Dimensionality

- Principal Component Analysis

a2 LUMS

A Not-for-Profit Uni



The Curse of Dimensionality

Concept:

- Refers to the problems or phenomena associated with classifying,
analyzing and organizing the data in high-dimensional spaces that
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the
data set must also have exponential growth. That means, we need a
very large dataset to maintain the density of points in the high
dimensional space.

< LUMS
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The Curse of Dimensionality

lllustration 1:

- For high-dimensional datasets, the size of data space is huge.

ZEQ"

For an exponentially large number
/

of cells, we need an exponentially

l[arge amount of training data to
ensure that the cells are not

empty.

7, . Iq
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The Curse of Dimensionality

lllustration 2:

Consider a ball of radius r defined as

B(r) = {|x[l2 < r|x € R"}

Volume of a ball of radius r

V(d) = Kqr?

Fraction of a volume between the balls of radius 1
and radius 1 — €

V(1) —V(1—e
V(1)

=1—(1—¢)

e LUMS
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lllustration 2:
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The Curse of Dimensionality
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The Curse of Dimensionality
lllustration 2 (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

e =0.1

| ) -nnm-
the shell: I—(1—¢) 019 0.65 0.995 1.000 1.000
the inner ball: (1 — ¢) 09 081 035 0005 0.000 0.000

For d = 50, 5 out of 1000 data-points would be inside the inner ball.

For d = 400, (1 — €)% = 4.9774e — 19; almost all points lie on the surface of the
ball.

If you take a test point on the origin and d = 400, (almost) every point is at
the same (Euclidean) distance from the origin.
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The Curse of Dimensionality
lllustration 2 (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

e = 0.01

d=1] 2 | 10 | 50 | 400 | 784
the shell: 1 —(1—¢) 001 0.02 0096 0395 0982 0.999
the inner ball: (1 — ¢) 099 098 0904 0.605 0018 0.0004
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Practical Datasets

- With the increase in the number of features or number of dimensions of
the feature space, data-points are never near to one another.

- Real-world data in the higher dimensional space is confined to a region
with effective lower dimensionality.
- Dimensionality Reduction

- Real-world data exhibits smoothness that enables us to make
predictions exploiting interpolation techniques.

~ For example,
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively
1 dimensional manifold in probably Lmillion dimensional space.
- Face recognition in an image (50 or 71 features)
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Dimensionality Reduction
Feature Extraction:

Transform existing features to obtain a set of new features using some mapping function.

X = |x1,T2,...,24]
| RN
z = [21,22,...,2k

- The mapping function z=f(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional
space to the lower dimensional space.

- Mathematically, we want to find an optimum mapping z=f(x) that preserves the
desired information as much as possible.

LUMS
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Dimensionality Reduction
Feature Extraction:

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.
- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as
accurately as possible in the lower-dimensional space, e.g., Principal
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates
the data in the lower-dimensional space, e.g., Linear Discriminant
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.
= LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

z = W'x
- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data
- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance

LUMS
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7z = Wix

- Can you tell the size of matrix W for
the following cases

- find best planar approximation to 4D data

- find best planar approximation to 100D data
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:

[] Class 0
O Class 1

Most contribution of each
class lies in this direction

S 2
Second Principal 4\*3\ First Principal Component
Component -
0
-1
2k _
_3 | | | | | |
-2 0 2 4 6 8 10
Feature 1
LUMS Toy lllustration in two dimensions
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Geometric Intuition:

6 T T T T 6 | |
[J Class 0 [] Class 0
O Class 1 O Class 1
51 . 5 _
4 - — 4 -
N3k 7 3r 7
S
g 1r 7 1r 7
E ol . 0 ‘ I T TR 7
A 7 A ]
2 iy 2 y
-3 L L I | | | 3 | i | | | |
2 0 2 4 6 8 10 2 0 2 4 6 8 10
Principal Component 1 Principal Component 1
Change of coordinates: Linear combinations [gnoring the Second Component/Feature

of features
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

We have n feature vectors of the form x € R%.
Note d represents the number of features.

In PCA, we want to represent x in a new space of lower dimensionality using
only k basis vectors (k < d), that is,

k
X = E i1 Vg
1=1

such that
[x — x[|2
is minimized.
Here v; € R? for i = 1,2, ...,k represent the k£ number of orthogonal vectors

that form the basis, referred to as principal components, of the subspace of
dimensionality=k.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

How do we find the basis vectors v; € R for i = 1,2,...,k?

Steps to find Principal Components:

We have n feature vectors x; € R4, i=1,2,...,n.

Step 1: Compute Sample Mean:

Sample mean (note summtion over the number of feature vectors n)

n
1
X = — E X
n
1=1

Step 2: Subtract Sample Mean:

Subtract sample mean from each feature vector x; to obtain s;, that is,

<% LUMS S, = x; — X
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

Now we have n feature vectors s; € R%, i=1,2,...,n.

Calculate the Covariance Matrix as follows

1 mn
Y= — s;S;
et
This can also be expressed as
1
¥ =—8s"
n
where
S = [Sl,SQ,... ,Sn]

LUMS
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What is special about these vectors?

Zero mean; taken along all feature vectors

How do you interpret the entries of the
matrix? Spend some time and try to
understand this!

For two vectors f,g € R", covariance is defined as

7t = D (fi — ave(f)) (91 — ave(g)




Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Special about the Covariance Matrix:

The covarince matrix is symmetric, that is, 7 = X. (super easy to show)

The covarince matrix is positive semi-definite. (again, super easy)

Size of > 1s d x d.

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:
Carry out eigenvalue decomposition of the covarince matrix as

> = VDV’

Here the matrix V = [vy,va,...,Vvy] contains d orthogonal eigenvectors v; €
R, referred to as principal components, that serve as the basis of R?.

Here the matrix D is a diagonal matrix with eigenvalues denoted by A1, Ao, ..., Aq4.

LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Step 5: Dimensionality Reduction

We wanted to find the basis vectors v; € R% fori = 1,2, ..., k.
We have v, e R for i =1,2,...,d.
- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Construct the maapping matrix of size d X k as
W = [Vl,Vg, c o ,Vk]

to reduce the dimensionality of the feature space from R? to R* as
z = W'x

LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Using z, we can go back to R? to obtain apprxoimation of x as

Zsz =

||M?r

Connection with the Objectlves:

- Objective 1: the features after mapping are uncorvelated; cannot be reduced further
- Enabled by orthogonality of the principal components
- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with
largest eigenvalues, that is, those dimensions capturing the variations in the data.

- PCA maps the data along the directions where we have most of the
variations in the data.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

How do we choose k?

- It depends on the amount of information, that is variance, we want to preserve in the
mapping process.

- We can define a variable T to quantify this preservation of information

K
A
]

(3

> T

2

d
A
—1

- T=1, when k=d; No reduction.
- T=0.8, interpreted as that 80% variation in the data has been preserved.
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Example: d =2, n=10, k=1

Step 1: Compute sample mean:

a2 LUMS

A Not-for-Profit Uni

Step 2: Subtract Sample Mean:

X = [1.81, 1.91] S, =X, — X
T1 T2 S1 S92

2.5000 2.4000 |*1 0.6900 0.4900
0.5000 0.7000 |x2 -1.3100 -1.2100
2.2000 2.9000 0.3900 0.9900
1.9000 2.2000 0.0900 0.2900
3.1000 3.0000 1.2900 1.0900
2.3000 2.7000 0.4900 0.7900
2.0000 1.6000 0.1900 -0.3100
1.0000 1.1000 -0.8100 -0.8100
1.5000 1.6000 -0.3100 -0.3100
1.1000 0.9000 -0.7100 -1.0100

Step 3: Calculate the Covariance Matrix:

S = [s1,82,...,S,]
z::lzn:s :—SST
nz’ 1 *

s _ [0.5549  0.5539
= 10.5539  0.6449

We have divided by n. Some authors
divide by n-1. It won’t change the
principal components



Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

5 —vDVY vy |-07352 06779 p_ [00442 0
0.6779  0.7352 0  1.1556

Step 5: Dimensionality Reduction

Use W = |v3] (associated with the largest eigenvalue) to reduce the dimension-
ality of the feature space from R? to R as

7z = W1x

LUMS
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|

3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073




Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:

[] Class 0
O Class 1

Most contribution of each
class lies in this direction

S 2
Second Principal 4\*3\ First Principal Component
Component -
0
-1
2k _
_3 | | | | | |
-2 0 2 4 6 8 10
Feature 1
LUMS Toy lllustration in two dimensions
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Geometric Intuition:

6 T T T T 6 | |
[J Class 0 [] Class 0
O Class 1 O Class 1
51 . 5 _
4 - — 4 -
N3k 7 3r 7
S
g 1r 7 1r 7
E ol . 0 ‘ I T TR 7
A 7 A ]
2 iy 2 y
-3 L L I | | | 3 | i | | | |
2 0 2 4 6 8 10 2 0 2 4 6 8 10
Principal Component 1 Principal Component 1
Change of coordinates: Linear combinations [gnoring the Second Component/Feature

of features
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Practical Considerations and Limitations:
- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal com;\/oomemts
(directions) and therefore features are uncorrelated to each other. In other words, PCA
decorrelates the features.

- Limitation:
- PCA does not consider the separation of data with respect to class label and

therefore we do not have a guarantee the mapping of the data along dimensions of
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which
the classes are best separated.
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