

AI-501 Mathematics for AI

Convex Optimization – Overview

Zubair Khalid School of Science and Engineering

https://www.zubairkhalid.org/ai501 2024.html

Optimization – Overview:

Optimization involves finding the best solution to a problem within a set of constraints. Formally, an optimization problem can be expressed as:

$$\min_{x \in \mathbb{R}^n} f_o(x)$$
 subject to $x \in \mathcal{C}$,

where:

 $f_o(x)$ is the **objective function**, which we aim to minimize or maximize.

 \mathcal{C} is the **feasible set**, defined by constraints such as inequalities or equalities.

x represents the decision variables.

Optimization – Overview – Formulation:

An optimization problem of finding a variable x is usually formulated as

minimize
$$f_o(x)$$

subject to $f_i(x) \le 0, \quad i = 1, 2, ..., m$

$$h_j(x) = 0, \quad , j = 1, 2, \dots, p$$

 $f_o(x)$ - Objective function $f_i(x)$ - Inequality constraint functions $h_j(x)$ - equality constraint functions

Applications:

Machine Learning: Training models, support vector machines, and regression.

Engineering: Signal processing, control systems, and circuit design.

Economics: Portfolio optimization and game theory.

Optimization – Overview – Examples:

Unconstrained Optimization:

$$\min_{x \in \mathbb{R}} (x^2 - 4x + 4).$$

Constrained Optimization:

$$\min_{x_1, x_2 \in \mathbb{R}^2} x_1^2 + x_2^2 \quad \text{subject to} \quad x_1 + x_2 = 1, \ x_1 \ge 0, \ x_2 \ge 0.$$

Standard Form of Convex Optimization Problems:

The general form of a convex optimization problem is:

minimize $f_o(x)$ subject to $f_i(x) \le 0, \quad i = 1, 2, ..., m$ $h_j(x) = 0, \quad , j = 1, 2, ..., p$

where:

 $f_o(x)$ is a convex objective function.

 $f_i(x)$ are convex inequality constraint functions.

 $h_j(x)$ are affine equality constraint functions.

Convex Optimization Problems – Geometric Interpretation:

Convex optimization can be viewed as finding the "lowest point" of the graph of a convex objective function $f_o(x)$ over a feasible region \mathcal{C} . The feasible region is defined as the intersection of the constraints:

$$C = \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ h_j(x) = 0\}.$$

Connection to Convex Sets:

If all $f_i(x)$ are convex functions and all $h_j(x)$ are affine functions, the feasible region \mathcal{C} is a convex set. This is because:

- A convex inequality constraint $f_i(x) \leq 0$ defines a convex region.
- Affine equality constraints $h_j(x) = 0$ define a linear subspace or affine subspace, which is convex.
- The intersection of convex sets is convex.

Convex Sets – Overview here – See Tutorial Problem Notes:

Convex Optimization Problems – Geometric Interpretation:

Visualization: In \mathbb{R}^2 (two dimensions), the convex optimization problem can be visualized as:

A convex feasible region \mathcal{C} , often represented as a polygon or curved region.

A convex objective function f(x), represented as contour lines (level sets) or a surface.

The goal is to find the point within C where f(x) achieves its minimum value.

Optimal Solution: If the feasible region \mathcal{C} is non-empty and f(x) is continuous and convex, the optimization problem has a global minimum at a point $x^* \in \mathcal{C}$. This property arises from the convexity of f(x) and \mathcal{C} , which ensures no local minima exist outside the global minimum.

<u>Convex Optimization Problems – Geometric Interpretation – Examples:</u>

Linear Programming (LP): The feasible region \mathcal{C} is a polyhedron, and the objective function $f(x) = c^T x$ is linear. The optimal solution is at a vertex of the polyhedron.

Quadratic Programming (QP): The feasible region \mathcal{C} is convex, and the objective function $f(x) = \frac{1}{2}x^TQx + c^Tx$ is a convex paraboloid. The optimal solution lies in the interior or on the boundary of \mathcal{C} .

Let's cover this in more detail.

Linear Programming (LP):

Linear programming is a special case of convex optimization where both the objective function and the constraints are linear. The standard form with inequality and equality constraints is:

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to: $Gx \le h$, Ax = b.

 $c \in \mathbb{R}^n$ is the coefficient vector of the objective function.

 $G \in \mathbb{R}^{m_{\text{ineq}} \times n}$ is the constraint matrix for the inequality constraints.

 $h \in \mathbb{R}^{m_{\text{ineq}}}$ is the vector of bounds for the inequality constraints.

 $A \in \mathbb{R}^{m_{\text{eq}} \times n}$ is the constraint matrix for the equality constraints.

 $b \in \mathbb{R}^{m_{\text{eq}}}$ is the vector of bounds for the equality constraints.

Linear Programming (LP) – Example:

Problem: Minimize the cost of production subject to resource constraints.

$$\min_{x_1, x_2} 3x_1 + 5x_2 \quad \text{subject to:}$$

$$2x_1 + x_2 \le 6$$
, $x_1 + 3x_2 \le 9$, $x_1, x_2 \ge 0$.

Quadratic Programming (QP):

Quadratic programming extends linear programming by allowing the objective function to be quadratic, while constraints remain linear. The standard form is:

minimize
$$f_o(x)=\frac{1}{2}x^TPx+q^Tx+r$$
 Quadratic (Convex) $P\in \mathbf{S}^n_+$ subject to $Ax\preceq b$
$$Gx=h$$

Quadratic Programming (QP) – Examples:

1. Least-Squares:

$$minimize f_o(x) = ||Ax - b||_2^2$$

Quadratic

2. Constrained Least-Squares:

$$minimize f_o(x) = ||Ax - b||_2^2$$

Quadratic

subject to
$$a \leq x \leq b$$

Box Constraints