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Convex Optimization — Overview

Optimization — Overview:

Optimization involves finding the best solution to a problem within a set of
constraints. Formally, an optimization problem can be expressed as:

min f,(x) subjectto =z €C,
rER™

where:
fo(x) is the objective function, which we aim to minimize or maximize.

C is the feasible set, defined by constraints such as inequalities or equal-
ities.

x represents the decision variables.
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Convex Optimization — Overview

Optimization — Overview — Formulation:

An optimization problem of finding a variable x is usually formulated as

minimize f,(x)
subject to fi(z) <0, i=1,2,...,m
hj(.CE):O, ,j:1,2,...,p

fo(z) - Objective function f;(z) - Inequality constraint functions h,(x) - equality constraint functions

Applications:

Machine Learning: Training models, support vector machines, and re-
gression.

Engineering: Signal processing, control systems, and circuit design.

Economics: Portfolio optimization and game theory.
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Convex Optimization — Overview

Optimization — Overview — Examples:

Unconstrained Optimization:

min(z? — 4z + 4).
reR

Constrained Optimization:

min CU% + CC% subject to x1+xo =1, x1 >0, o > 0.
x1,x2ER?
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Convex Optimization — Overview

Standard Form of Convex Optimization Problems:

The general form of a convex optimization problem is:

minimize f,(z)
subject to fi(x) <0, i=1,2,...,m
hj(l‘):(), ,j:1,2,...,p

where:
fo(x) is a convex objective function.
fi(x) are convex inequality constraint functions.

h;(x) are affine equality constraint functions.
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Convex Optimization — Overview

Convex Optimization Problems — Geometric Interpretation:

Convex optimization can be viewed as finding the ”lowest point” of the graph
of a convex objective function f,(x) over a feasible region C. The feasible region
is defined as the intersection of the constraints:

C={zeR"| fi(z) <0, hj(z) =0}

Connection to Convex Sets:

If all f;(x) are convex functions and all h;(x) are affine functions, the
feasible region C is a convex set. This is because:
— A convex inequality constraint f;(x) < 0 defines a convex region.

— Affine equality constraints h;(x) = 0 define a linear subspace or affine
subspace, which is convex.

— The intersection of convex sets is convex.
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Convex Optimization — Overview

Convex Sets — Overview here — See Tutorial Problem Notes:
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Convex Optimization — Overview

Convex Optimization Problems — Geometric Interpretation:

Visualization: In R? (two dimensions), the convex optimization problem can
be visualized as:

A convex feasible region C, often represented as a polygon or curved region.

A convex objective function f(z), represented as contour lines (level sets)
or a surface.

The goal is to find the point within C where f(x) achieves its minimum
value.

Optimal Solution: If the feasible region C is non-empty and f(z) is contin-
uous and convex, the optimization problem has a global minimum at a point
x* € C. This property arises from the convexity of f(z) and C, which ensures
no local minima exist outside the global minimum.
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Convex Optimization — Overview

Convex Optimization Problems — Geometric Interpretation — Examples:

Linear Programming (LP): The feasible region C is a polyhedron, and
the objective function f(x) = ¢’ is linear. The optimal solution is at a
vertex of the polyhedron.

Quadratic Programming (QP): The feasible region C is convex, and
the objective function f(x) = %azTQx + ¢’x is a convex paraboloid. The
optimal solution lies in the interior or on the boundary of C.

Let’s cover this in more detail.
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Convex Optimization — Overview

Linear Programming (LP):

Linear programming is a special case of convex optimization where both the
objective function and the constraints are linear. The standard form with in-
equality and equality constraints is:

min ¢!z

zER"
subject to: Gx < h, Ax=0>.
c € R" is the coeflicient vector of the objective function.
G € R™inea”™ ig the constraint matrix for the inequality constraints.
h € R™irea i the vector of bounds for the inequality constraints.

A € R"ea*™ ig the constraint matrix for the equality constraints.

b € R™ea is the vector of bounds for the equality constraints.
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Convex Optimization — Overview

Linear Programming (LP) — Example:

Problem: Minimize the cost of production subject to resource constraints.

min 3z + 5xs subject to:
1,22

201 + 22 <6, x14+322 <9, x1,29 > 0.
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Convex Optimization — Overview

Quadratic Programming (QP):

Quadratic programming extends linear programming by allowing the objective
function to be quadratic, while constraints remain linear. The standard form

1S:

minimize fo(#) = 32T Pz + ¢+ 1 Quadratic (Convex) PeSh
subject to Az <Xb Affine
Gr =h
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Convex Optimization — Overview

Quadratic Programming (QP) — Examples:

1. Least-Squares:

minimize fo(x) = [|[Ax — b||§ Quadratic

2. Constrained Least-Squares:

minimize fo(x) = ||[Ax — b||% Quadratic

subject to a <z <b Box Constraints
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