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- Emotion Detection.

- Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.

- Speaker Identification from Speech Signal.

- Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.
 
- Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

Classification

Multi-class (Multinomial) Classification:

Recap:

Binary or Binomial Classification:

- Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.



Overview:
- kNN: Instance based Classifier

- Naïve Bayes: Generative Classifier 

- Indirectly compute P(y|x) as P(x|y) P(y) from the data using Bayes rule

- Logistic Regression: Discriminative Classifier

- Estimate P(y|x) directly from the data

- ‘Logistic regression’ is an algorithm to carry out classification. 

- Name is misleading; the word ‘regression’ is due to the fact that the method attempts 

to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.

- A simple form of a neural network.

Logistic Regression



Model:

- Consider a binary classification problem.

- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic Regression

Real-valued output here!

Regression



Model:

- Consider a binary classification problem.

- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic Regression

Real-valued output here!

We want probability;
between 0 and 1!

Logistic/Sigmoid function

Activation function



Logistic (Sigmoid) Function 

Logistic Regression



Change in notation:

- Treat bias term as an input feature for notational convenience.

Logistic Regression

Linear function.
Linear Regression.



Classification:

Logistic Regression



Example:

- Disease prediction: Diagnose cancer given size of the tumor.

Logistic Regression
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Decision Boundary:

Logistic Regression



Hyper-Plane:

Logistic Regression

Source: https://www.cs.cornell.edu/courses/cs4780/2018sp/lectures/lecturenote03.html



Decision Boundary - Example:

Logistic Regression



Non-linear Decision Boundary:

Logistic Regression



Non-linear Decision Boundary:

Logistic Regression

(Circle of radius 1.5)
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Model Training (Learning of Parameters):

- Objective: Given the training data, that is n training samples, we want to find the 

parameters of the model.

- We first formulate the loss (cost, objective) function that we want to optimize.

- We will employ gradient descent to solve the optimization problem.

Logistic Regression

Logistic regression model:



Loss/Cost Function:

- Candidate 1: Squared-error, the one we used in regression.

Logistic Regression

- We wish to have a loss function that is differentiable and convex.

- The squared-error is not a convex function due to sigmoid operation.

- Due to non-convexity, we cannot numerically solve to find the global minima.

- Furthermore, the hypothesis function is estimating probability and we do not use 

difference operation to determine the distance between the two probability distributions.



Loss/Cost Function:

- Candidate 2: Cross entropy loss or Log loss function is used when classifier 

output is in terms of probability.

- Idea:  Cross-entropy loss increases when the predicted probability diverges 

from the actual label.

- If the actual class is 1 and the model predicts 0, we should highly penalize 

it and vice-versa. 

Logistic Regression

- Loss/cost function for single training example:

- Mismatch is penalized: larger mistakes get larger penalties



Loss/Cost Function:

- We can also express the loss/cost for one training sample as

Logistic Regression

- Using this formulation, we define the loss function:

- Since cost for each sample penalizes mismatch, this loss function prefers the correct class 

label to be more likely.

- Finding parameters that minimizes loss function or maximizes negative of the loss function 

is, in fact, maximum likelihood estimation (MLE). How?



Loss/Cost Function:

- We can also reformulate the loss/cost for one training sample as

Logistic Regression



Model Training (Learning of Parameters):

- We have following optimization problem in hand:

Logistic Regression

- We do not attempt to find analytical solution.

- We can use properties of convex functions, composition rules and concavity of log to 

show that the loss function is a convex function.

- We use gradient descent to numerically solve the optimization problem.
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Gradient Descent:
Logistic Regression

Algorithm (we have seen this before):
Overall:

Pseudo-code:

Note: Simultaneous update.



Gradient Descent Computation:

Logistic Regression



Gradient Descent Computation:

Logistic Regression

Overall:
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Multi-Class (Multinomial) Classification:

Logistic Regression

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:



Multi-Class (Multinomial) Classification:

Logistic Regression

Option 2: Build an all-vs-all classifier (commonly known as one-vs-one classifier):

Example:

Classifier 1
A vs B

Classifier 2
B vs C

Classifier 3
A vs C

Select label for which 
the  sum is maximum



Multi-Class (Multinomial) Logistic Regression:

- Idea: Extend logistic regression using softmax instead of logistic (sigmoid).

- We have following logistic regression model for binary classification case (M=2).

Logistic Regression



- For M classes, we extend the formulation of the logistic function.

- Again, note that the model gives us probability of class membership.

- We assign the label that is more likely.

Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

Logistic function for 2 classes.

Softmax for M classes.



Multi-Class (Multinomial) Logistic Regression:

Logistic Regression

- A critical assumption here: no ordinal relationship between the classes. 

- Linear function for each of the m classes.

- The softmax function

- Input: a vector of M real numbers

- Output: M probabilities proportional to the exponentials of the input numbers.



Multi-Class Logistic Regression – Graphical Representation of the Model:

Logistic Regression



Multi-Class (Multinomial) Logistic Regression – Cost Function

Logistic Regression



Summary:

Logistic Regression

- Employs regression followed by mapping to probability using logistic function 

(binary case) or softmax function (multinomial case).

- Do not make any assumptions about distributions of classes in feature space.

- Decision boundaries separating classes are linear.

- It provides a natural probabilistic view of class predictions.

- Loss function is formulated using cross entropy loss.

- Can be trained quickly using gradient descent.

- Computationally efficient at classifying (needs inner product only)

- Model coefficients can be interpreted as indicators of importance of the features.
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