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Classification

Recap:

e We assume we have training data D given by

D = {(Xlayl)a (X27y2)7 sy (Xnayn)} C Xd X y

Binary or Binomial Classification:

e V=1{0,1Yor Y ={-1,1}

Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.

Multi-class (Multinomial) Classification:

e V=1{1,2,..., M} (M-class classification)

Emotion Detection.

Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.
Speaker Identification from Speech Signal.

Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

LUMS
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Logistic Regression

Overview:
— kNN: Instance based Classifier

- Naive Bayes: Generative Classifier

- Indirectly compute P(y|x) as P(x|y) P(y) from the data using Bayes rule
- Logistic Regression: Discriminative Classifier
- Estimate P(glx) directly from the data

- ‘Logistic regression’ is an algorithm to carvy out classification.
- Name is misleading; the word ‘regression’ is due to the fact that the method attempts
to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.
e Mathematically, model is characterized by variables 6.
he(x) = P(y|x) Posterior probability
- A simple form of a neural network.

LUMS
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).
- Logistic regression model:

1 0o
) 61 > . Jhe (x) >0  class 1
he(x) <0 class 0
(%) 0> ho(x) = 6y + 6'x
R? — R
Real-valued output here!

v
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic/Sigmoid function

1 0 _ 1
’ G(Z) - 14e—=
(L) 04
> > o) — :
o 1+e heo(x)
(%) 0> ho(x) = 0y + 6'x
R — R
Real-valued output here!
We want probability; Activation function

LUMS between O and 1!
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Logistic Regression
Logistic (Sigmoid) Function

1
o(z) =
14+e* L
e Interpretation: maps (—oo,00) to (0,1) ()
e Squishes values in (—oo, ) to (0,1)
e It is differentiable. 0.5
e Generalized logistic function:
L
o(z) = 1 1 o—k(=—20) | L
& -4 -2 0

e Sigmoid: because of S shaped curve

LUMS
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Logistic Regression
Change in notation:

- Treat bias term as an input feature for notational convenience.

1 tq
(1) 04 -
> >  o() —— ho(x)=0(0"Xx)
. 1
ZC(Q) 92 QTX T 1+e—9Tx
RY -5 R
() 04
—~— N
X 2]
RA+1 Linear function.
Linear Regression.
LUMS In g ion
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Logistic Regression
Classification:

1 —— 6o

2

01 T

I(z) 92 BTX T 1+e—9Tx

(@)

04

e hg(x) = P(y = 1|x) represents the probability of class membership.
e Assign class by applying threshold as

) {Class 1 o(07x) > 0.5
y —

Class 0 otherwise

e 0.5 is the threshold defining decision boundary.

e We can also use values other than 0.5 as threshold.
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Logistic Regression
Example:

- Disease prediction: Diagnose cancer given size of the tumor.

e Tumor size, x
e Binary output, y = 0 if tumor is benign and y = 1 for malignant tumor.

e Linear regression model attempt

ho(z) = 01x = 6y + 6,2 e output is real-valued (—oo, 00)
e Logistic regression model

he(ﬂ?) — 0(90 9137) — 1

1—|—6_(60+ 01x)

sigmoid squishes values from (—o0,c0) to (0, 1)

o If hg(x) = 0.65 for any tumor size z, class label? malignant, because hg(x) = P(y = 1|x)

LUMS
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Logistic Regression

Decision Boundary:

1
(v =11%) = ho(x) = 0(67x) = ———r

j= {Class 1 o(07x) > 0.5

Class 0 otherwise

i {Class 1 0'x >0

Class 0 otherwise

o All x for which 87x > 0 classified as Class 1.

e What does 87x > 0 represent?

e [t represents a half-space in d-dimensional space.

e 01x=0 represents a hyperplane in d-dimensional space.
Need a brief explanation!

LUMS
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Logistic Regression
Hyper-Plane:

e 01x =0 represent a hyperplane in d-dimensional space.

o d=1 |

07x =0y + 012 =0 | . .

BTX = 90 + 912’3(1) + 9233(2) =0

61 and #5 defines a normal to the hyper-plane.

e Hyper-plane 0'x = 0 divides the space into two half-spaces.

e Half-space 87x > 0 e Half-space 87x < 0

LUMS
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Logistic Regression

Decision Boundary - Example:

v = Class 0 otherwise

A {Class 1 0'x >0

e Predict admission given exam 1 and exam 2 scores (d = 2)
e All x for which 87x > 0 classified as Class 1.

e 01x =0y + 0;2) + 0,22 =0

e Given after learning from the data.

6y = —92 61 = 92/95 0, =1

e Sigmoid returns close to 1 or 0
for points farther from the boundary.

LUMS

Admission Data m admitted
& notadmitted

Exam 2 Score

60 70 80 90 100

Exam 1 Score ZU(I)
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Logistic Regression
Non-linear Decision Boundary:

e Can we have non-linear decision boundaries in logistic regression?

e We first understand the origin of the linear decision boundary.

e 07x = 0 represents a linear combination of the features.

e Connect with the concept of polynomial regression.

e Replace linear with polynomial; consider the following model, for example,
for d = 2,

Linear boundary: hg(x) = o(0y + 010 + 9233(2))

Non-linear boundary: hg(x) = J<90—|—91:13(1)—|—9239(2)—|—93 (gg(l))2+94 ($(2))2)

LUMS
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Logistic Regression
Non-linear Decision Boundary:

Non-linear boundary: hg(x) =0 (90+91m(1)+923¢(2)+93 ($(1))2+94 ($(2))2)

e Given after learning from the data.

2
2
ho(x) = a( 14 (M) 4 (x(z))2>
0
Boundary: (+(0)? + (o2)? = 2.2 .
(Circle of radius 1.5) .
-6 -4 7

LUMS
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Logistic Regression

Model Training (Learning of Parameters):
e We assume we have training data D given by

D = {(x1,41), (X2,%2), > (Xn,yn)} € X x Y

e V= {07 1}
Logistic regression model:
_ T _ 1
hQ(X) T 0(9 X) o 1+€—9Tx
0 = [0y,01,...,04 0 represents d + 1 parameters of the model.

- Objective: Given the training data, that is n training samples, we want to find the

parameters of the model.
- We first formulate the loss (cost, objective) function that we want to optimize.

- We will employ gradient descent to solve the optimization problem.

LUMS

A Not-for-Profit University
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Logistic Regression
Loss/Cost Function:

- Candidate 1: Squared-error, the one we used in regression.

mn

L() = % S (ho(xi) — i) = % S (0(0"x:) —yi)”

1 Z’”’ 1 2

- We wish to have a loss function that is differentiable and convex.

- The squared-ervor is not a convex function due to sigmoid operation.

- Due to non-convexity, we cannot numerically solve to find the global minima.

- Furthermore, the hypothesis function is estimating probability and we do not use

difference operation to determine the distance between the two probability distributions.

LUMS
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Logistic Regression
Loss/Cost Function:

- Candidate 2: Cross entropy loss or Log loss function is used when classifier

output is in terms of probability.

- ldea: Cross-entropy loss increases when the predicted probability diverges

from the actual label.

- If the actual class is 1 and the model predicts O, we should highly penalize

it and vice-versa.

- Loss/cost function for single training example:

—log(he(x;)) y=1

COSt(hB(Xi)ay?l) — {_ log(1 — hg(x;)) y=20

For y; = 1,

e cost=0 when hg(x;) =1 e cost=o0 when hg(x;) =0

- Mismatch is penalized: larger mistakes get larger penalties

LUMS
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Logistic Regression
Loss/Cost Function:

- We can also express the loss/cost for one training sample as

{ log(he (x;)) y=1

COSt(ha(Xi)ay’i) — 3\ log(1 — he(x;)) y =10

COSt(hg(Xi), y@) = —y; log(hge(x;)) — (1 — y;) log(1 — he(x;))
- Using this formulation, we define the loss function:

L(0) =) yilog(he(x;)) + (1 — y;) log(1 — ha(x;))

=
- Since cost for each sample penalizes mismatch, this loss function prefers the corvect class
[abel to be more likely.

- Finding parameters that minimizes loss function or maximizes negative of the loss function

is, in fact, maximum likelihood estimation (MLE). How?

LUMS
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Logistic Regression

Loss/Cost Function:
- We can also reformulate the loss/cost for one training sample as

COSt(he(Xz'), yz) = —y;log(he(x;)) — (1 — y;) log(1 — he(x;))

COSt(hg(Xi),yi) = —log (he(xz'))yi (1— hB(Xi))(l—yi))

Inside the log; we have a
e likelihood function since hg(x;) gives us probability of y; = 1.

e probability mass function, (p¥i)(1 — p)' =¥, of Bernoulli random variable.
e Cost is the negative log-likelihood function, also referred to as cross-entropy loss.
e Minimizing cost; equivalent to maximization of log-likelihood or likelihood.

e Therefore, 8 that minimizes £(@), maximizes likelihood.

LUMS
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Logistic Regression
Model Training (Learning of Parameters):

- We have following optimization problem in hand:

miniemize L(O) =— ; y; log(he(xi)) + (1 — i) log(1 — he(x;))

- We do not attempt to find analytical solution.
- We can use properties of convex functions, composition rules and concavity of log to
show that the loss function is a convex function.

- We use gradient descent to numerically solve the optimization problem.

LUMS
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Logistic Regression
Gradient Descent:

e For gradient descent, we defined the following update in each iteration:

oL
93(—93—0{8—93, a >0

89 : Rate of change in the loss function with respect to 0;

e « is referred to as step size or learning rate.

e Idea: step size in the direction of negative of the derivative.

Algorithm (we have seen this before):
Overall:

e Start with some 8 € R? and keep updating to reduce the loss function
until we reach the minimum. Repeat until convergence

Pseudo-code:

e Initialize 8 € RY.
e Repeat until convergence:

8E
0; < 0, ——, foreach ¢=0,1,2,...,d 0« 0—aVL(O) Note: Simultaneous update.

@ LUMS 06
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Logistic Regression

Gradient Descent Computation:

oL 9
96, *

L(0) = — Zy@ log(he(x;)) + (1 — y;) log(1 — he(x;))

e How to compute

e Derivative is linear; drop subscript 2 and compute for each training sample.

0 1 1 1,
— _ _ — (1 —
50 (y log(he(x)) + (1 — y) log(1 hg(X))) (y o () =) (X)) 7 (he(x))
. . 1 e—GTx
e Noting he(x) = T oo7x 1 —he(x) = s
e We can write
0 6_6Tx 9, e—BTx 1 . |
—(hg(x)) = — (9" - (4) = h 1—~h (7)
893 ( 9( )) (1 4 e_ng)Q 893 ( X) 1 + e_ng 1 i e—QTX xr Q(X)( Q(X)) T

LUMS
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Logistic Regression
Gradient Descent Computation:

8(2 (y log(he(x)) + (1 —y)log(1l — he(X)))
9 |
9 9 (ho(x)) = he(x)(1 — ho(x)) 40
- (yhel(x) _(1_9)1_;9&))893- (ho(x)) g, Uo(x)) = ol (1= o(x)) 217

_ YA —he() = (L =9)ho(X) py(x)(1 = hg(x)) 0
hg(X)(l — hg(X))

= (y — ho(x)) 2z = —(ho(x) —y) 2@
Overall:
0LO)

00; Z a(Z (y log(he(xi)) + (1 — yi) log(1 — hG(Xi))>

a2 LUMS
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Logistic Regression

Multi-Class (Multinomial) Classification:
e V=1{0,1,2,..., M — 1} (M-class classification)

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:

e Train M different binary logistic regression classifiers ho(x), h1(x), ..., har—1(%).

e Classifier h;(x) is trained to classify if x belongs to i-th class or not.
e For a new test point z, get scores for each classifier, that is, s; = h;(z).
e s, represents the probability that z belongs to class 1.

e Predict the label as y = max Si
i=0,1,2,...,M—1

LUMS
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Logistic Regression

Multi-Class (Multinomial) Classification:
e V=1{0,1,2,..., M — 1} (M-class classification)

Option 2: Build an all-vs-all classifier (commonly known as one-vs-one classifier):

e Train (AQ/[ ) = (M)(Qil) different binary logistic regression classifiers h; ;(x).

o Classifier h; ;(x) is trained to classify if x belongs to i-th class or j-th
class.

e For a new test point z, get scores for each classifier, that is, s; ; = h; ;(2).

e s;; gives the probability of z being from class 7 and not in class j.

Select label for which

e Predict the label g for which the sum of probabilities is maximum. . .
the sum is maximum

Example:
e Consider a problem with 3 classes, A, B and C. Pr(A) + P3(A)
Classifier1  EWZI@ZY Classifier 2 LYE=) Classifier 3 WY@ Py (B) + P»(B)
AvsB Pl(B) BvsC P> (C) AvsC P3(C)
P (C) + P5(C

A Not-for-Profit University




Logistic Regression

Multi-Class (Multinomial) Logistic Regression:
- ldea: Extend logistic regression using softmax instead of logistic (sigmoid).

- We have following logistic regression model for binary classification case (M=2).

1 — 6

eD)

61

e

92 BTX =

£(d)

04

e hg(x) = P(y = 1|x) represents the probability of membership of class 1.

e Model: weighted sum of features followed by sigmoid for squishing the
values of weighted sum between 0 and 1.

1 69Tx eBTx
— = = Ply=1|x) = Ply=1\x) =
Ply =1[x) = he(x) = 77> =1k =Frn 7 PU=1x="5"%
e—GTx : 60
(y |X) B(X) 1 —I— e—QTX (y |X) eeTx ‘I‘ 1 (y | ) 69 X _I_ 60

LUMS

A Not-for-Profit University




Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

- For M classes, we extend the formulation of the logistic function.

- Again, note that the model gives us probability of class membership.
- We assign the label that is more likely.

e Noting this, we build a model for m-th class as

0,, " x

P(y = mlx) = ho,, (x) =
D 01T x 0,,,— model parameters
k=0

e Model: weighted sum of features followed by softmax function.

e Softmax - extension of logistic function:

(2) 1 e” f () 1 e*m
o(2) = = softmax(z,,) = =
l+e % e*+el " 14+ e 7 Mil »
e
Logistic function for 2 classes. =0

Softmax for M classes.
LUMS
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

0., x

P(y = m|x) = hg,, (x) = —

MZ—:l 6u Tx 0.,,— model parameters
e

k=0

- A critical assumption here: no ordinal relationship between the classes.
- Linear function for each of the m classes.
- The softmax function

- Input: a vector of M real numbers

- Output: M probabilities proportional to the exponentials of the input numbers.

e We have 0,, = [0,.0,0m.1,.-.,0m.q] for each class m ={0,1,..., M — 1}.

e In total, we have (d + 1) x M parameters.

LUMS
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Logistic Regression

Multi-Class Logistic Regression — Graphical Representation of the Model:

input (features)

X
90TX Softmax
Q 0 > > P(y=0x) = ha, (x)
T
@ o, — L x, oOm T > P(y=1[x) = he, (x)
he,, (X) = —
T eGka
O 9, —02'x | > > Py = 2|x) = ho, (%)

' T
@ 01 On—1 X> > Py =

Y
LUMS m=0,1,2,....M—1
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression — Cost Function

e For binary classification, we have:

L£(8) = =) yilog(he(x,)) + (1 — yi) log(1 — he(x;))

=1

e Extending the same for multi-class logistic regression:

n M-—1
>y ) log (he,, (x;))
1=1 m=0
n M-—1 Gme'L
o(y ) log (Mi )
i=1 m=0 Z ek x;
k=0

LUMS
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Logistic Regression

Summary:

- Employs regression followed by mapping to probability using logistic function
(binary case) or softmax function (multinomial case).

- Do not make any assumptions about distributions of classes in feature space.

- Decision boundaries separating classes are linear.

- [t provides a natural probabilistic view of class predictions.

- Loss function is formulated using cross entropy loss.

- Can be trained quickly using gradient descent.

- Computationally efficient at classifying (needs inner product only)

- Model coefficients can be interpreted as indicators of importance of the features.

LUMS
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