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AI-501 MATHEMATICS FOR AI Week 06

Week 06 - Problems

Question 1: Linear Regression

You are given a dataset with four observations and three predictors:

Observation x1 x2 x3 y
1 1 2 3 14
2 2 4 6 28
3 3 6 9 42
4 4 8 12 56

Notes:

• There is perfect multicollinearity among the predictors: x2 = 2x1 and x3 = 3x1.

Tasks:

(a) Perform a standard linear regression of y on x1, x2, and x3 without regularization.

(i) Attempt to compute the regression coefficients β = (β0, β1, β2, β3)
⊤ using the normal equations

(X⊤X)β = X⊤y.

(ii) Explain why the normal equations cannot be solved directly in this case.

(b) Compute the regression coefficients using the Moore-Penrose pseudoinverse.

(i) Calculate the pseudoinverse of X⊤X.

(ii) Compute β = (X⊤X)+X⊤y, where (X⊤X)+ denotes the pseudoinverse of X⊤X.

Solution

(a) Standard Linear Regression without Regularization

(i) Attempt to compute the regression coefficients β = (β0, β1, β2, β3)
⊤ using the normal

equations (X⊤X)β = X⊤y.
First, construct the design matrix X and response vector y:

X =


1 1 2 3
1 2 4 6
1 3 6 9
1 4 8 12

 , y =


14
28
42
56


Compute X⊤X:
First, calculate the elements of X⊤X.
Compute sums:

4∑
i=1

xi0 =

4∑
i=1

1 = 4

4∑
i=1

xi1 = 1 + 2 + 3 + 4 = 10

4∑
i=1

xi2 = 2 + 4 + 6 + 8 = 20

4∑
i=1

xi3 = 3 + 6 + 9 + 12 = 30

Compute cross-products:
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4∑
i=1

x2
i1 = 12 + 22 + 32 + 42 = 30

4∑
i=1

xi1xi2 = (1)(2) + (2)(4) + (3)(6) + (4)(8) = 60

4∑
i=1

xi1xi3 = (1)(3) + (2)(6) + (3)(9) + (4)(12) = 90

4∑
i=1

x2
i2 = 22 + 42 + 62 + 82 = 120

4∑
i=1

xi2xi3 = (2)(3) + (4)(6) + (6)(9) + (8)(12) = 180

4∑
i=1

x2
i3 = 32 + 62 + 92 + 122 = 270

Now, assemble X⊤X:

X⊤X =


4 10 20 30
10 30 60 90
20 60 120 180
30 90 180 270


Compute X⊤y:

X⊤y =


∑4

i=1 yi = 14 + 28 + 42 + 56 = 140∑4
i=1 xi1yi = (1)(14) + (2)(28) + (3)(42) + (4)(56) = 420∑4
i=1 xi2yi = (2)(14) + (4)(28) + (6)(42) + (8)(56) = 840∑4

i=1 xi3yi = (3)(14) + (6)(28) + (9)(42) + (12)(56) = 1260

 =


140
420
840
1260


Set up the normal equations:

(X⊤X)β = X⊤y


4 10 20 30
10 30 60 90
20 60 120 180
30 90 180 270



β0

β1

β2

β3

 =


140
420
840
1260


(ii) Explain why the least-squares solution cannot be used directly in this case.
The matrix X⊤X is singular because there is perfect multicollinearity among the predictors:

x2 = 2x1, x3 = 3x1

This means the columns of X are linearly dependent, causing X⊤X to be non-invertible. Therefore,
the normal equations cannot be solved directly using standard matrix inversion methods.

(b) Computing Regression Coefficients Using the Moore-Penrose Pseudoin-
verse

(i) Calculate the pseudoinverse of X⊤X.
Since X⊤X is singular, we cannot compute its inverse directly. Instead, we compute its pseudoinverse

using the Moore-Penrose pseudoinverse.
Alternatively, we can recognize that due to the perfect multicollinearity, the predictors can be ex-

pressed in terms of x1:

x2 = 2x1, x3 = 3x1
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This suggests that we can reduce the problem to a regression with a single predictor, x1.
(ii) Compute β = (X⊤X)+X⊤y.
We construct a reduced design matrix Xnew containing only the intercept and x1:

Xnew =


1 x11

1 x21

1 x31

1 x41

 =


1 1
1 2
1 3
1 4


Compute X⊤

newXnew:

X⊤
newXnew =

[
4 10
10 30

]
Compute the inverse of X⊤

newXnew:
First, compute the determinant:

det(X⊤
newXnew) = (4)(30)− (10)2 = 120− 100 = 20

Compute the inverse:

(X⊤
newXnew)

−1 =
1

20

[
30 −10
−10 4

]
Compute X⊤

newy:

X⊤
newy =

[ ∑4
i=1 yi = 140∑4

i=1 xi1yi = (1)(14) + (2)(28) + (3)(42) + (4)(56) = 420

]
Compute βnew:

βnew = (X⊤
newXnew)

−1X⊤
newy =

1

20

[
30 −10
−10 4

] [
140
420

]
Compute the products:

β0 =
1

20
(30× 140− 10× 420) =

1

20
(4200− 4200) =

0

20
= 0

β1 =
1

20
(−10× 140 + 4× 420) =

1

20
(−1400 + 1680) =

280

20
= 14

Therefore, the estimated coefficients are:

β0 = 0, β1 = 14

Since x2 and x3 are linear combinations of x1, their coefficients are not uniquely determined. Any
combination of β1, β2, and β3 satisfying:

β1 + 2β2 + 3β3 = 14

will fit the data perfectly.
For the minimum-norm solution (Moore-Penrose pseudoinverse), the pseudoinverse gives the solution

with the smallest ∥β∥2. This results in:

β2 = 0, β3 = 0

Thus, the estimated coefficients using the pseudoinverse are:

β =


β0

β1

β2

β3

 =


0
14
0
0
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Question 2 (Ridge and Lasso Regression)

Part A: First-order Optimality Conditions

Consider the following Ridge and Lasso regression loss functions:

• Ridge regression loss function:

Lridge(β1, β2) =

n∑
i=1

(yi − (β1X1i + β2X2i))
2
+ λ(β2

1 + β2
2)

• Lasso regression loss function:

Llasso(β1, β2) =

n∑
i=1

(yi − (β1X1i + β2X2i))
2
+ λ(|β1|+ |β2|)

Derive the first-order optimality conditions for both Ridge and Lasso regression.

Solution

For Ridge regression, taking the derivative of the loss function with respect to β1 and β2 gives the
first-order optimality conditions:

∂Lridge

∂β1
= −2

n∑
i=1

X1i (yi − β1X1i − β2X2i) + 2λβ1 = 0

∂Lridge

∂β2
= −2

n∑
i=1

X2i (yi − β1X1i − β2X2i) + 2λβ2 = 0

For Lasso regression, differentiating the loss function with respect to β1 and β2 gives:

∂Llasso

∂β1
= −2

n∑
i=1

X1i (yi − β1X1i − β2X2i) + λsign(β1) = 0

∂Llasso

∂β2
= −2

n∑
i=1

X2i (yi − β1X1i − β2X2i) + λsign(β2) = 0

Here, the term sign(β1) introduces a subgradient which makes it possible for Lasso to set coefficients
to zero.

Part B: Handling Correlated Features

Discuss how Ridge and Lasso regression handle highly correlated features.

Solution

For highly correlated features, Ridge regression tends to shrink both coefficients towards zero but keeps
them non-zero. This helps in reducing multicollinearity but does not perform feature selection. Ridge
regression distributes the penalty equally across all coefficients, meaning it retains both correlated features
but shrinks their magnitudes.

In contrast, Lasso regression may set one of the correlated feature’s coefficients to zero, effectively
performing feature selection. Lasso introduces sparsity by adding the absolute value penalty (ℓ1 norm),
which encourages some coefficients to become exactly zero, allowing it to discard one of the correlated
features.

Example:

Consider two highly correlated features, X1 and X2. Ridge regression will result in small but non-zero
coefficients for both X1 and X2. However, Lasso may set β1 to zero and retain β2, or vice versa, effectively
selecting one of the two features.
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Part C: Proof of Shrinkage Behavior

Prove that Ridge regression shrinks all coefficients, while Lasso can shrink some coefficients to zero.

Solution

The constraint geometries imposed by the ℓ2 and ℓ1 norms explain the different behaviors of Ridge and
Lasso regression.

For Ridge regression, the penalty term is β2
1 + β2

2 , which forms a circular constraint (in 2D). As the
constraint is quadratic, it smoothly shrinks all coefficients towards zero but never exactly to zero unless
λ is very large. This means Ridge regression shrinks all coefficients but retains all features.

For Lasso regression, the penalty term is |β1|+ |β2|, which forms a diamond-shaped constraint. The
sharp corners of the constraint allow some coefficients to reach exactly zero. This encourages sparsity
in the model, making Lasso capable of feature selection by setting some coefficients to zero. In high
dimensions, this geometry results in a sparse solution.

Therefore, while Ridge shrinks all coefficients continuously, Lasso sets some coefficients exactly to zero
depending on the data and the regularization strength λ.
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Problem

You are given the following real symmetric 2× 2 matrix:

A =

[
4 −2
−2 1

]
Tasks:

(a) Compute the eigenvalues and eigenvectors of matrix A.

(i) Find the characteristic polynomial of A and solve for its eigenvalues.

(ii) For each eigenvalue, find the corresponding eigenvectors and normalize them.

(b) Diagonalize matrix A using its eigenvalues and eigenvectors.

(i) Construct a matrix P whose columns are the normalized eigenvectors of A.

(ii) Show that P−1AP = D, where D is the diagonal matrix of eigenvalues.

(c) Use the eigenvalue decomposition to compute A3.

(i) Use the fact that A = PDP−1 and Ak = PDkP−1.

(ii) Compute D3 and then A3.

(d) Discuss the properties of matrix A:

(i) Is A positive definite?

(ii) What can you say about the eigenvalues in terms of their signs and magnitudes?

(iii) Explain how the entries of A affect its eigenvalues and eigenvectors.

Solution

(a) Compute the eigenvalues and eigenvectors of matrix A.

(i) Find the characteristic polynomial of A and solve for its eigenvalues.
The characteristic polynomial of A is obtained by calculating the determinant of A− λI:

det(A− λI) = 0

Compute A− λI:

A− λI =

[
4− λ −2
−2 1− λ

]
Compute the determinant:

det(A− λI) = (4− λ)(1− λ)− (−2)(−2)

= (4− λ)(1− λ)− 4

= (4× 1− 4λ− λ× 1 + λ2)− 4

= (4− 4λ− λ+ λ2)− 4

= (λ2 − 5λ+ 4)− 4

= λ2 − 5λ

Set the characteristic equation:

λ2 − 5λ = 0

Factor out λ:

λ(λ− 5) = 0

Thus, the eigenvalues are:
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λ1 = 0, λ2 = 5

(ii) For each eigenvalue, find the corresponding eigenvectors and normalize them.
For λ = 0:
Solve (A− 0I)v = 0: [

4 −2
−2 1

] [
v1
v2

]
=

[
0
0

]
Set up the system of equations: {

4v1 − 2v2 = 0

−2v1 + v2 = 0

From the second equation:

v2 = 2v1

Substitute back into the first equation to verify consistency:

4v1 − 2(2v1) = 0 =⇒ 4v1 − 4v1 = 0

Thus, the eigenvector corresponding to λ = 0 is:

v1 = v1

[
1
2

]
Normalize v1:

∥v1∥ =
√

v21 + (2v1)2 = v1
√
1 + 4 = v1

√
5

Choose v1 =
1√
5
, so the normalized eigenvector is:

v1 =
1√
5

[
1
2

]
For λ = 5:
Solve (A− 5I)v = 0: [

−1 −2
−2 −4

] [
v1
v2

]
=

[
0
0

]
Set up the system of equations: {

−1v1 − 2v2 = 0

−2v1 − 4v2 = 0

From the first equation:

v1 = −2v2

Substitute back into the second equation to verify consistency:

−2(−2v2)− 4v2 = 0 =⇒ 4v2 − 4v2 = 0

Thus, the eigenvector corresponding to λ = 5 is:

v2 = v2

[
−2
1

]
Normalize v2:

∥v2∥ =
√
(−2v2)2 + v22 = v2

√
4 + 1 = v2

√
5
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Choose v2 =
1√
5
, so the normalized eigenvector is:

v2 =
1√
5

[
−2
1

]

(b) Diagonalize matrix A using its eigenvalues and eigenvectors.

(i) Construct a matrix P whose columns are the normalized eigenvectors of A.

P =

[
v1

∣∣∣∣v2

]
=


1√
5

−2√
5

2√
5

1√
5


(ii) Show that P−1AP = D, where D is the diagonal matrix of eigenvalues.
Since A is symmetric, the eigenvectors are orthogonal, and P is an orthogonal matrix. Therefore,

P−1 = P⊤.
Compute D:

D =

[
λ1 0
0 λ2

]
=

[
0 0
0 5

]
Verify that P⊤AP = D:

P⊤AP = D

Compute P⊤:

P⊤ =


1√
5

2√
5

−2√
5

1√
5


Compute P⊤A:

P⊤A =


1√
5

2√
5

−2√
5

1√
5

[ 4 −2
−2 1

]
=


(4)(1) + (−2)(2)√

5

(−2)(1) + (1)(2)√
5

(4)(−2) + (−2)(1)√
5

(−2)(−2) + (1)(1)√
5


Simplify:

P⊤A =


4− 4√

5

−2 + 2√
5

−8− 2√
5

4 + 1√
5

 =

 0 0
−10√

5

5√
5


Compute P⊤AP :

P⊤AP =

 0 0
−10√

5

5√
5




1√
5

−2√
5

2√
5

1√
5

 =

 0 0
−10√

5
× 1√

5
+

5√
5
× 2√

5

−10√
5

× −2√
5
+

5√
5
× 1√

5


Simplify:

P⊤AP =

 0 0(
−10

5
+

10

5

) (
20

5
+

5

5

) =

[
0 0
0 5

]
= D

Therefore:

P−1AP = D
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(c) Use the eigenvalue decomposition to compute A3.

(i) Use the fact that A = PDP−1 and Ak = PDkP−1.
We have:

A3 = PD3P−1

(ii) Compute D3 and then A3.
Compute D3:

D3 =

[
03 0
0 53

]
=

[
0 0
0 125

]
Compute A3:

A3 = PD3P⊤

Compute PD3:

PD3 =


1√
5

−2√
5

2√
5

1√
5

[0 0
0 125

]
=

0
−250√

5

0
125√
5


Compute A3:

A3 =

0
−250√

5

0
125√
5




1√
5

2√
5

−2√
5

1√
5

 =


(
0× 1√

5
+

−250√
5

× −2√
5

) (
0× 2√

5
+

−250√
5

× 1√
5

)
(
0× 1√

5
+

125√
5
× −2√

5

) (
0× 2√

5
+

125√
5
× 1√

5

)


Simplify:

A3 =

 500

5

−250

5−250

5

125

5

 =

[
100 −50
−50 25

]

(d) Discuss the properties of matrix A.

(i) Is A positive definite?
A matrix is positive definite if all its eigenvalues are positive. Since A has eigenvalues λ1 = 0 and

λ2 = 5, it is not positive definite because one of its eigenvalues is zero (not strictly positive).
(ii) What can you say about the eigenvalues in terms of their signs and magnitudes?
- Signs: One eigenvalue is zero, and the other is positive. - Magnitudes: λ1 = 0, λ2 = 5. - The

zero eigenvalue indicates that A is singular (non-invertible).
(iii) Explain how the entries of A affect its eigenvalues and eigenvectors.
- The negative off-diagonal elements introduce coupling between the variables. - The combination of

diagonal and off-diagonal elements determines the spread of the eigenvalues. - The structure of A leads to
one eigenvalue being zero, reflecting redundancy or linear dependence in the system. - The eigenvectors
indicate the directions of variance, influenced by the relative magnitudes of the entries in A.
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Week 07 - Problems

1. Basic Concepts of SVD

Question: What is the Singular Value Decomposition (SVD) of a matrix? Given a matrix A ∈ Rm×n,
write down the SVD of A.

Solution: The SVD of a matrix A is a factorization A = UΣV T , where U ∈ Rm×m, Σ ∈ Rm×n (a
diagonal matrix with non-negative real numbers on the diagonal), and V ∈ Rn×n. The columns of U are
called the left singular vectors, and the columns of V are the right singular vectors. The diagonal entries
of Σ are the singular values.

2. Geometric Interpretation of SVD

Question: Explain the geometric interpretation of SVD in terms of linear transformations. What do
the matrices U , Σ, and V T represent in terms of rotating, scaling, and projecting vectors?

Solution: The SVD decomposes the matrix into three parts: V T rotates the input data, Σ scales the
data along the principal axes, and U rotates the scaled data to the output space. The matrix V T gives
the directions in the input space, Σ represents the magnitude of stretching along these directions, and U
aligns these transformed vectors to the output space.

3. SVD and Rank of a Matrix

Question: Explain how SVD can be used to determine the rank of a matrix. How do the singular values
in the diagonal matrix Σ relate to the rank of matrix A?

Solution: The rank of matrix A is the number of non-zero singular values in Σ. These singular values
represent the extent to which each independent direction contributes to the transformation described by
A. If some singular values are zero, they indicate that the matrix compresses the input space along those
dimensions, reducing the rank.

4. Low-Rank Approximation via SVD

Question: Given the SVD of a matrix A ∈ Rm×n, how can you compute a low-rank approximation
of A? Why is this useful in practice, especially in data compression or noise reduction? Why is this
approximation optimal in terms of the Frobenius norm?

Solution:
The optimal low-rank approximation theorem states that for a given matrix A ∈ Rm×n and a desired

rank k, the low-rank approximation Ak that minimizes the approximation error is given by:

Ak = arg min
rank(B)≤k

∥A−B∥F

where ∥ · ∥F denotes the Frobenius norm.
Given the SVD of the matrix A = UΣV T , the best rank-k approximation is constructed by keeping

only the largest k singular values from Σ, along with their corresponding singular vectors from U and V .
The low-rank approximation is given by:

Ak = UkΣkV
T
k

where Uk ∈ Rm×k, Σk ∈ Rk×k, and Vk ∈ Rn×k. The reason this approximation is optimal in the
Frobenius norm is that the singular values σ1, σ2, . . . , σk in Σk capture the largest contributions to the
matrix’s variance. Hence, minimizing the sum of the squared errors in the approximation yields:

∥A−Ak∥2F =

min(m,n)∑
i=k+1

σ2
i

This result shows that the error is the sum of the squares of the discarded singular values, making Ak

the best approximation in terms of minimizing the Frobenius norm.
This approximation is useful in applications like data compression, where it reduces the storage or

transmission cost, and in noise reduction, where it can help filter out small singular values that may
correspond to noise rather than signal.
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5. SVD, Pseudoinverse and Solution of Linear Systems

Question: How can the SVD be used to compute the Moore-Penrose pseudoinverse of a matrix A ∈
Rm×n? Write the formula for the pseudoinverse using SVD.

Solution: Given the SVD of A = UΣV T , the Moore-Penrose pseudoinverse A+ is given by:

A+ = V Σ+UT

where Σ+ is obtained by taking the reciprocal of each non-zero singular value in Σ and transposing the
matrix.

Using the SVD A = UΣV T , the least-squares solution is given by:

x = A+b = V Σ+UTb

The solution is unique if all singular values of A are non-zero, meaning that the matrix A has full column
rank.

6. Condition Number and Stability

Question: Explain how the singular values of a matrix relate to its condition number. Why is the
condition number important for numerical stability?

Solution: The condition number κ(A) of a matrix A is defined as the ratio of the largest singular
value to the smallest non-zero singular value:

κ(A) =
σmax

σmin

A high condition number indicates that the matrix is ill-conditioned, meaning that small changes in the
input can cause large changes in the output, leading to numerical instability. I will explain this during
the tutorial.

7. Compute the SVD of a 2x2 Matrix

Question: Given the matrix

A =

(
3 1
1 3

)
compute the Singular Value Decomposition (SVD) of A. Provide the matrices U , Σ, and V T .

Solution: 1. Compute ATA:

ATA =

(
3 1
1 3

)(
3 1
1 3

)
=

(
10 6
6 10

)
2. Compute the eigenvalues of ATA. The characteristic equation is:

det(ATA− λI) = 0 =⇒ det

((
10 6
6 10

)
− λ

(
1 0
0 1

))
= 0

det

(
10− λ 6

6 10− λ

)
= (10− λ)2 − 36 = 0 =⇒ λ2 − 20λ+ 64 = 0

The eigenvalues are λ1 = 16, λ2 = 4.
3. The singular values of A are σ1 =

√
16 = 4, σ2 =

√
4 = 2.

4. Compute the eigenvectors of ATA corresponding to the eigenvalues. For λ1 = 16, solve:

(ATA− 16I)v1 = 0 =⇒
(
−6 6
6 −6

)(
v11
v21

)
= 0

This gives v1 = 1√
2

(
1
1

)
.

For λ2 = 4, solve:

(ATA− 4I)v2 = 0 =⇒
(
6 6
6 6

)(
v12
v22

)
= 0
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This gives v2 = 1√
2

(
−1
1

)
.

5. Thus, V =

(
1√
2

− 1√
2

1√
2

1√
2

)
.

6. The matrix U is computed as U = AV Σ−1. Perform the matrix multiplication to get U :

U =

(
3 1
1 3

)( 1√
2

− 1√
2

1√
2

1√
2

)(
1
4 0
0 1

2

)
=

(
1√
2

− 1√
2

1√
2

1√
2

)

So, the SVD is:

A =

(
1√
2

− 1√
2

1√
2

1√
2

)(
4 0
0 2

)( 1√
2

− 1√
2

1√
2

1√
2

)T

8. PCA using SVD

Question: How can Singular Value Decomposition (SVD) be used to perform Principal Component
Analysis (PCA)? Outline the steps to compute PCA using SVD for a dataset.

Solution: PCA can be performed using SVD by first centering the data (subtracting the mean from
each data point). Then, apply SVD to the centered data matrix X = UΣV T . The columns of V represent
the principal components (directions of maximum variance), and the singular values in Σ correspond to
the magnitude of the variance along each principal component. The first k columns of V can be used to
reduce the dimensionality of the data by projecting the data onto the top k principal components.

9. Variance Explained by Principal Components

Question: Given the SVD of a dataset X, how do you compute the proportion of the total variance
explained by the first k principal components? Provide an expression for this variance.

Solution: The proportion of variance explained by the first k principal components is given by the
sum of the squares of the first k singular values divided by the sum of the squares of all the singular
values:

Variance explained by top k components =

∑k
i=1 σ

2
i∑r

i=1 σ
2
i

where σi are the singular values, and r is the rank of the matrix.

10. Connection Between Eigenvalues and SVD in PCA

Question: Show the relationship between the eigenvalue decomposition of the covariance matrix and
the SVD of the data matrix when performing PCA. How do the eigenvalues and eigenvectors of the
covariance matrix relate to the singular values and singular vectors from SVD?

Solution: The covariance matrix 1
nX

TX has the same eigenvectors as the right singular vectors from
the SVD of X, and the eigenvalues are the squares of the singular values divided by n. Specifically, if
X = UΣV T , then XTX = V ΣTΣV T , where V contains the eigenvectors and the diagonal elements of
ΣTΣ (i.e., the singular values squared) are the eigenvalues.

9. Principal Component Analysis (PCA) using SVD

Question: Consider the following dataset:

X =

2 0
3 2
4 4


a) Center the dataset by subtracting the mean of each column.
b) Perform Singular Value Decomposition (SVD) on the centered dataset.
c) Project the data onto the first principal component.
d) Compute the proportion of the variance explained by each principal component.

Solution:
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1. Center the data:

Mean of column 1 =
2 + 3 + 4

3
= 3, Mean of column 2 =

0 + 2 + 4

3
= 2

The centered data matrix is:

Xcentered =

2− 3 0− 2
3− 3 2− 2
4− 3 4− 2

 =

−1 −2
0 0
1 2


2. Perform SVD on the centered matrix:

Xcentered = UΣV T

This yields:

U =

−0.707 0 0.707
0 1 0

0.707 0 0.707

 , Σ =

3.162 0
0 0
0 0

 , V =

(
0.447 −0.894
0.894 0.447

)

3. Project the data onto the first principal component:

First principal component = V1 =
(
0.447 0.894

)T
The projected data is:

Xprojected = XcenteredV1 =

−1 −2
0 0
1 2

(0.447 0.894
)
=

−2.236
0

2.236


Variance Explained by Principal Components

In general the proportion of the total variance due to the ith principal component is given by
σ2
i

Σr
k=0σ

2
k
.

In this case, we only have one eigenvalue, therefore this will account for 100% of the total variance.
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Week 08 - Problems

Calculus

Multivariate Taylor series

The multivariate Taylor series is a generalization of the Taylor series for functions of multiple variables,
expanding a function around a point to approximate its values nearby. For any smooth function f(x),
where x = [x1, x2, .., xn]

T , the second order Taylor Series Expansion around a point a = [a1, a2, .., an]
T

is given by:

f(a) +∇f(a)T (x− a) +
1

2
(x− a)TH(a)(x− a) (1)

Where, ∇f(a) is the gradient of f(x) evaluated at a and H(a) represents the Hessian Matrix evaluated
at a.

Problems

1. Given f(x, y) = sin(x)ey + cos(xy), find the second-order Taylor series expansion around the point
a = (0, 0).

2. Let f(x, y, z) = x2 + y2 + z2 + 2xy + 3xz − yz. Use the second-order Taylor expansion around the
point a = (1,−1, 2) to approximate f and determine if a is a local minimum, maximum, or saddle
point. Use the eigenvalues of the Hessian matrix to justify your answer.

3. Consider the function f(x, y, z) = xey+z + y sin(z)+ z cos(x). Derive the second-order Taylor series
expansion around a = (0, 0, 0). Calculate the gradient and Hessian at a, then use them to construct
the Taylor expansion.

Solution

Problem 1 Step 1: First Derivatives
We compute the first derivatives of f(x, y):

∂f

∂x
= ey cos(x)− y sin(xy)

∂f

∂y
= sin(x)ey − x sin(xy)

Step 2: Second Derivatives
Next, we calculate the second-order partial derivatives of f(x, y):

∂2f

∂x2
= −ey sin(x)− y2 cos(xy)

Evaluating at (0, 0):
∂2f

∂x2
(0, 0) = − sin(0)− 0 = 0

∂2f

∂y2
= sin(x)ey − x2 cos(xy)

Evaluating at (0, 0):
∂2f

∂y2
(0, 0) = sin(0)− 0 = 0

∂2f

∂x∂y
= cos(x)ey − sin(xy)− xy cos(xy)

Evaluating at (0, 0):
∂2f

∂x∂y
(0, 0) = cos(0)− 0 = 1

Step 3: Hessian Matrix
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The Hessian matrix H(x, y) at (0, 0) is:

H(0, 0) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
0 1
1 0

]
Step 4: Final Answer

Putting everything together, we obtain:

f(x, y) ≈ 1 +
[
1 0

] [x
y

]
+

1

2

[
x y

] [0 1
1 0

] [
x
y

]
f(x, y) ≈ 1 + x+ xy

Problem 2
Step 1: First Derivatives
First, plugging a in the function, we get f(1,−1, 2) = 12.
We compute the first derivatives of f(x, y, z):

∂f

∂x
= 2x+ 2y + 3z = 6

∂f

∂y
= 2y + 2x− z = −2

∂f

∂z
= 2z + 3x− y = 8

Step 2: Second Derivatives
Next, we calculate each second derivative:

∂2f

∂x2
= 2

∂2f

∂y2
= 2

∂2f

∂z2
= 2

∂2f

∂x∂y
= 2

∂2f

∂x∂z
= 3

∂2f

∂y∂z
= −1

Step 3: Hessian Matrix
The Hessian matrix H(x, y, z) is:

H(x, y, z) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =

2 2 3
2 2 −1
3 −1 2


This Hessian matrix is constant, so we use it for any point, including (1,−1, 2).
Step 4: Eigenvalues We want to find the eigenvalues by solving the characteristic equation:

det(H − λI) = 0

where I is the identity matrix and λ is the eigenvalue. First, we write the matrix H − λI:

H − λI =

2− λ 2 3
2 2− λ −1
3 −1 2− λ


Now, we calculate the determinant:
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det(H − λI) = det

2− λ 2 3
2 2− λ −1
3 −1 2− λ


Expanding the determinant:

(2− λ) [(2− λ)(2− λ)− (−1)(−1)]− 2 [2(2− λ)− (−1)(3)] + 3 [2(−1)− 3(2− λ)]

Simplifying the terms:

= (2− λ)
[
(2− λ)2 − 1

]
− 2 [2(2− λ) + 3] + 3 [−2− 6 + 3λ]

We then solve this cubic equation for λ to find the eigenvalues. The eigenvalues are: λ1 = −2.11, λ2 =
5.2, λ3 = 2.91, Hence a is not an extremum.

Step 5: final answer
Putting everything together:

f(x, y, z) ≈ 12 +
[
6 −2 8

] x− 1
y + 1
z − 2

+
[
x− 1 y + 1 z − 2

] 2 2 3
2 2 −1
3 −1 2

x− 1
y + 1
z − 2


Problem 3 Step 1: First Derivatives
We compute the first derivatives of f(x, y, z):

∂f

∂x
= ey+z − z sin(x)

∂f

∂y
= xey+z + cos(z)

∂f

∂z
= xey+z + y cos(z)− sin(x)

Step 2: Second Derivatives
Next, we calculate each second derivative:

∂2f

∂x2
= −z cos(x)

∂2f

∂y2
= xey+z

∂2f

∂z2
= xey+z − y sin(z)

∂2f

∂x∂y
= ey+z

∂2f

∂x∂z
= ey+z − sin(x)

∂2f

∂y∂z
= xey+z − y sin(z)

Step 3: Hessian Matrix
The Hessian matrix H(x, y, z) is:

H(x, y, z) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


Substituting the second derivatives, we have:

H(x, y, z) =

 −z cos(x) ey+z ey+z − sin(x)
ey+z xey+z xey+z − y sin(z)

ey+z − sin(x) xey+z − y sin(z) xey+z − y sin(z)
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Step 4: Evaluate at a = (0, 0, 0)
Substitute x = 0, y = 0, and z = 0 into the Hessian matrix:

H(0, 0, 0) =

0 1 1
1 0 0
1 0 0


Step 5: Final Answer

f(x, y, z) ≈ x+ y − z +
1

2

[
x y z

] 0 1 1
1 0 0
1 0 0

xy
z


Overview of Integration as Anti-Derivative

Integration is the inverse operation of differentiation. If F (x) is an anti-derivative of f(x), then the
integral of f(x) over an interval [a, b] is represented as:∫

f(x) dx = F (x) + C

where C is the constant of integration.

Fundamental Theorem of Calculus

• Part 1: If F (x) is an anti-derivative of f(x), then:

d

dx

∫ x

a

f(t) dt = f(x)

• Part 2: The definite integral of f(x) from a to b is given by:∫ b

a

f(x) dx = F (b)− F (a)

where F is any anti-derivative of f .

Use Cases of Integration in Machine Learning and AI

There are hundreds of use-cases but we will just list two here.

• Probabilistic Models: Integration is essential for probability distributions, especially for comput-
ing marginal probabilities, normalization constants, and posterior distributions in Bayesian models.

p(y) =

∫
p(y|x)p(x) dx

• Expectation and Variance Calculation: Calculating the expected value of a continuous random
variable X with probability density function p(x) requires integration:

E[X] =

∫ ∞

−∞
xp(x) dx

Variance also involves integration:

Var(X) =

∫ ∞

−∞
(x− E[X])2p(x) dx
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Evaluation of Integration as Quadrature

Quadrature by Summation

Quadrature refers to methods used for the numerical approximation of definite integrals. By discretizing
the integral, we approximate it as a finite sum over equally spaced points. Let’s consider the integral of
a function f(x) over an interval [a, b]: ∫ b

a

f(x) dx

We can approximate this integral by dividing the interval [a, b] into n subintervals of equal width ∆x =
b−a
n . Then, the integral becomes a summation:∫ b

a

f(x) dx ≈
n∑

i=1

f(xi)∆x

where xi = a+ (i− 1)∆x represents the points at which f(x) is evaluated.

Problems on Basic Conceptual Integration

Problem: Find the anti-derivative of the function f(x) = 3x2+2x+1 and evaluate the definite integral
over [1, 3].
Solution: The anti-derivative F (x) of f(x) = 3x2 + 2x+ 1 is:

F (x) = x3 + x2 + x+ C

Evaluating
∫ 3

1
(3x2 + 2x+ 1) dx:

F (3)− F (1) = (33 + 32 + 3)− (13 + 12 + 1) = 39− 3 = 36

Problem: Let X be a continuous random variable with a probability density function f(x) = 4x3 for
x ∈ [0, 1]. Verify that f(x) is a valid probability density function and compute E[X], the expected value
of X.
Solution:

• First, verify f(x) is a valid probability density function by ensuring it integrates to 1:∫ 1

0

4x3 dx = x4
∣∣1
0
= 1

• To compute E[X]:

E[X] =

∫ 1

0

x · 4x3 dx =

∫ 1

0

4x4 dx =
4x5

5

∣∣∣∣1
0

=
4

5
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Convex Sets and Functions

In the lecture, we studied the convex functions. Here, we briefly define the convex set.

Convex Set – Overview

A subset C of a vector space Rn is called a convex set if, for any two points x, y ∈ C, the line segment
joining x and y is entirely contained within C. Formally, this means that for any x, y ∈ C and for any
θ ∈ [0, 1],

θx+ (1− θ)y ∈ C

In other words, if we take any two points in the set and form a convex combination of them, the result
will still lie within the set. The expression θx+(1− θ)y is known as a convex combination of x and y,
where θ is a weight that determines the relative position between x and y along the line segment joining
them. Below are some examples of convex sets.

1. Euclidean Space Rn

The entire Rn space is a convex set. For any two points x, y ∈ Rn, any convex combination θx+(1− θ)y
for θ ∈ [0, 1] lies within Rn.

2. Line Segments

A line segment connecting two points x and y in Rn is convex. By definition, all points of the form
θx + (1 − θ)y for θ ∈ [0, 1] are contained within the line segment between x and y, making it a convex
set.

3. Convex Polyhedrons

A convex polyhedron is the intersection of a finite number of half-spaces in Rn, such as a triangle or a
quadrilateral in R2, or a polytope in higher dimensions. For example, in R2, any triangle or quadrilateral
is a convex set since the line segment joining any two points within the shape will also lie within the
shape.

4. Convex Hull

The convex hull of a set of points {x1, x2, . . . , xk} in Rn is the smallest convex set containing all the
points. Formally, it is defined as:

conv(x1, x2, . . . , xk) =

{
k∑

i=1

θixi

∣∣∣∣∣ θi ≥ 0,

k∑
i=1

θi = 1

}
The convex hull is itself a convex set because any convex combination of points within the set remains
in the set.

5. Balls and Spheres

A ball (or disk in 2D) is the set of all points within a certain distance (radius) from a central point.
Mathematically, a ball of radius r centered at c in Rn is defined as:

B(c, r) = {x ∈ Rn | ∥x− c∥ ≤ r}

This is a convex set because, for any two points within the ball, the line segment joining them lies entirely
within the ball.

6. Half-Spaces

A half-space in Rn is defined by a linear inequality. For a vector a ∈ Rn and a scalar b, the set

H = {x ∈ Rn | aTx ≤ b}

is a convex set. For any two points x, y ∈ H, any convex combination θx + (1 − θ)y will also satisfy
aT (θx+ (1− θ)y) ≤ b, meaning the combination remains in H.
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Convex Functions

A function f : Rn → R is called convex if its domain is a convex set and, for all x, y ∈ dom(f) and
θ ∈ [0, 1], it satisfies the inequality (Jensen’s Inequality):

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

This property implies that the line segment joining any two points on the graph of f lies above the graph
itself. In simpler terms, the function does not “dip below” any line segment connecting two points on its
curve. Please also review the first-order and second-order conditions for convexity.

Examples of Convex Functions

• Linear Functions: Any linear function of the form f(x) = aTx + b, where a ∈ Rn and b ∈ R, is
convex (and also concave). This is because it satisfies the convexity inequality as an equality.

• Quadratic Functions with Positive Semi-Definite Hessian: A function of the form f(x) =
xTAx + bTx + c, where A is a positive semi-definite matrix, is convex. The positive semi-definite
nature of A ensures that the function curves upward, satisfying the convexity conditions.

• Exponential Function: The function f(x) = ex is convex on R. It satisfies the convexity inequal-
ity because the slope of the exponential function increases as x increases.

• Norm Functions: The Euclidean norm f(x) = ∥x∥2 =
√
x2
1 + x2

2 + · · ·+ x2
n is convex. Norms are

convex functions as they satisfy the triangle inequality.

• Logarithmic Functions: The negative logarithm function f(x) = − log(x) is convex on (0,∞).
Since the second derivative of − log(x) is positive, it satisfies the convexity condition.

Problems

Problem 1: Verifying Convexity of a Quadratic Function

Problem Statement: Let f(x) = x2 + 4x+ 5. Determine if f(x) is convex over R.
Solution: To verify convexity, we can check the second derivative of f(x).

f ′(x) = 2x+ 4

f ′′(x) = 2

Since f ′′(x) = 2 > 0 for all x ∈ R, the function f(x) = x2 + 4x+ 5 is convex.

Problem 2: Proving Convexity of the Exponential Function

Problem Statement: Show that the function f(x) = ex is convex over R.
Solution: To determine convexity, we calculate the second derivative of f(x) = ex.

f ′(x) = ex

f ′′(x) = ex

Since f ′′(x) = ex > 0 for all x ∈ R, the function f(x) = ex is convex.

Problem 3: Verifying Convexity Using the First-Order Condition

Problem Statement: Let f(x) = log(x) for x > 0. Verify if f(x) is concave over (0,∞) using the
first-order condition.

Solution: To verify concavity, we need to check if f(y) ≤ f(x) + f ′(x)(y − x) for any x, y > 0.
1. First, calculate the derivative of f(x):

f ′(x) =
1

x

2. Now, substitute into the first-order condition:

f(y) ≤ f(x) + f ′(x)(y − x)
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Expanding this, we have:

log(y) ≤ log(x) +
1

x
(y − x)

This inequality holds for x, y > 0, verifying that log(x) is concave over (0,∞).

Problem 4: Proving the Convexity (Advanced)

Show that the following functions f : Rn → R are convex.

(a) f(x) = ∥Ax− b∥, where A ∈ Rm×n, b ∈ Rm, and ∥ · ∥ is a norm on Rm

(b) f(x) = − (det(A0 + x1A1 + · · ·+ xnAn))
1/m

on the domain {x | A0 + x1A1 + · · · + xnAn ≻ 0},
where Ai ∈ Sm (the space of m×m symmetric matrices).

Solutions:

(a)
We know that a function g(y) = ∥y∥ is convex for any norm ∥ · ∥. Since g(y) = ∥y∥ is convex, we can
show that f(x) = ∥Ax− b∥ is also convex as follows.
Observe that f(x) = g(Ax− b), where g(y) = ∥y∥. Since g(y) is convex and Ax− b is an affine function
of x, f(x) = g(Ax− b) is also convex. Thus, f(x) = ∥Ax− b∥ is convex as it is a composition of a convex
function g(y) = ∥y∥ with an affine transformation Ax− b.
(b)
To show that f(x) is convex, we use the fact that the determinant function raised to the power 1

m is

concave on the set of positive definite matrices. Specifically, the function g(Y ) = (det(Y ))1/m is concave
for Y ≻ 0.
The expression A0 + x1A1 + · · · + xnAn is an affine transformation of x which maps into the space
of symmetric matrices. Since the composition of a concave function with a concave transformation is
convex when the function is negated, f(x) = −(det(A0+x1A1+ · · ·+xnAn))

1/m is convex on the domain
{x | A0 + x1A1 + · · ·+ xnAn ≻ 0}.
Therefore, f(x) is convex in x on the specified domain.
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Week 09 - Problems

1 LP and QP

Consider a network with n nodes and directed links between each pair of nodes. Let xij denote the flow
from node i to node j. The cost of the flow along the link from node i to node j is given by cijxij , where
cij are given constants. The total cost across the network is:

C =

n∑
i=1

n∑
j=1

cijxij .

Each link flow xij is subject to a lower bound lij (typically nonnegative) and an upper bound uij .
The external supply at node i is represented by bi, where bi > 0 means an external flow enters the

network at node i, and bi < 0 implies that an amount |bi| flows out of the network from node i. We
assume that 1Tb = 0, meaning the total external supply equals the total external demand.

The conservation of flow at each node implies that the total flow into node i (from external supply
and other nodes) minus the total flow out of node i equals zero.

The problem is to minimize the total cost of flow through the network, subject to the constraints
described above. Formulate this as a linear program (LP).

Solution:

minimize C =
∑n

i=1

∑n
j=1 cijxij

subject to bi +
∑n

j=1 xij −
∑n

j=1 xji = 0, i = 1, . . . , n,

lij ≤ xij ≤ uij , ∀i, j.
In this formulation:

• The objective function C =
∑n

i=1

∑n
j=1 cijxij minimizes the total flow cost across the network,

where cij represents the cost per unit flow from node i to node j, and xij is the flow amount on
this link.

• The flow conservation constraints bi+
∑n

j=1 xij −
∑n

j=1 xji = 0 ensure that the total incoming flow
(including external supply or demand bi) equals the total outgoing flow at each node i. Here:

– bi > 0 indicates external supply at node i, while bi < 0 represents demand.

–
∑n

j=1 xij is the total outgoing flow from node i, and
∑n

j=1 xji is the total incoming flow.

Since
∑n

i=1 bi = 0, the total supply equals total demand across the network.

• The flow bound constraints lij ≤ xij ≤ uij ensure that each flow xij remains within its specified
lower and upper bounds, lij and uij , for all i, j. This captures the capacity limitations of each link.

Thus, this linear program finds the cost-minimizing flow configuration across the network, while ensuring
that all flow conservation and capacity constraints are met. Consider the ℓ4-norm approximation problem:

minimize ∥Ax− b∥4 =

(
m∑
i=1

(aTi x− bi)
4

)1/4

where the matrix A ∈ Rm×n (with rows aTi ) and the vector b ∈ Rm are given. The goal is to find a
formulation of this problem as a quadratically constrained quadratic program (QCQP).

Solution:

1. Understanding the Original Problem:
We start with the problem:

minimize ∥Ax− b∥4 =

(
m∑
i=1

(aTi x− bi)
4

)1/4

where A ∈ Rm×n is a matrix with rows aTi , b ∈ Rm is a vector, and x ∈ Rn is the variable. This
objective represents the ℓ4-norm of the residual vector Ax− b.
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2. Objective Transformation:
The objective is to minimize ∥Ax− b∥4, which can be expanded as:

∥Ax− b∥4 =

(
m∑
i=1

(aTi x− bi)
4

)1/4

.

Directly minimizing this ℓ4-norm is challenging due to the fourth power and the root. We can
simplify by introducing auxiliary variables yi and zi for each residual term (aTi x− bi)

4.

3. Introducing Auxiliary Variables:
Define auxiliary variables yi such that:

yi = aTi x− bi, i = 1, . . . ,m.

Now, instead of working with (aTi x− bi)
4, we can work with y4i .

4. Formulating a Quadratic Constraint:
To avoid the fourth power, we introduce another auxiliary variable zi that approximates y2i . We
enforce zi ≥ y2i , or equivalently:

y2i ≤ zi, i = 1, . . . ,m.

This allows zi to act as an upper bound on y2i , so we can approximate the original ℓ4-norm objective
by minimizing the sum

∑m
i=1 z

2
i , related to the fourth power of the deviations.

5. Simplifying the Objective:
Since z2i bounds y4i , we approximate the original objective ∥Ax− b∥4 by minimizing the sum of z2i
terms:

minimize

m∑
i=1

z2i .

This objective is now quadratic, aligning with QCQP form.

6. Formulating the Final QCQP Problem:
The problem can now be written as a QCQP with the following objective and constraints:

minimize
∑m

i=1 z
2
i

subject to aTi x− bi = yi, i = 1, . . . ,m,

y2i ≤ zi, i = 1, . . . ,m.

2 Support Vector Machine

Classification Problems with Hyperplanes

1. Problem 1
Given the hyperplane defined by the line:

y = x1 + x2

Determine if the following points are correctly classified:

• y = 1, x = (2, 1)

• y = −1, x = (−1,−2)

Solution: The hyperplane equation is y = wTx = x1 + x2.

- For y = 1 and x = (2, 1):
wTx = 2 + 1 = 3

Since y = 1 and wTx = 3 > 0, this point is correctly predicted.

- For y = −1 and x = (−1,−2):
wTx = −1 + (−2) = −3

Since y = −1 and wTx = −3 < 0, this point is correctly predicted.
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2. Problem 2
Given the hyperplane defined by the line:

y = 2x1 − x2

Determine if the following points are correctly classified:

• y = 1, x = (1, 1)

• y = −1, x = (−2, 4)

Solution: The hyperplane equation is y = wTx = 2x1 − x2.

- For y = 1 and x = (1, 1):
wTx = 2 · 1− 1 = 1

Since y = 1 and wTx = 1 > 0, this point is correctly predicted.

- For y = −1 and x = (−2, 4):

wTx = 2 · (−2)− 4 = −4− 4 = −8

Since y = −1 and wTx = −8 < 0, this point is correctly predicted.

3. Problem 3
Given the hyperplane defined by:

y = −x1 + 3x2

Determine if the following points are correctly classified:

• y = 1, x = (0, 1)

• y = −1, x = (1, 2)

Solution: The hyperplane equation is y = wTx = −x1 + 3x2.

- For y = 1 and x = (0, 1):
wTx = −0 + 3 · 1 = 3

Since y = 1 and wTx = 3 > 0, this point is correctly predicted.

- For y = −1 and x = (1, 2):
wTx = −1 + 3 · 2 = −1 + 6 = 5

Since y = −1 but wTx = 5 > 0, this point is incorrectly predicted.

4. Problem 4
Given the hyperplane defined by:

y = 4x1 − x2

Determine if the following points are correctly classified:

• y = 1, x = (1,−2)

• y = −1, x = (−1, 5)

Solution: The hyperplane equation is y = wTx = 4x1 − x2.

- For y = 1 and x = (1,−2):
wTx = 4 · 1− (−2) = 4 + 2 = 6

Since y = 1 and wTx = 6 > 0, this point is correctly predicted.

- For y = −1 and x = (−1, 5):

wTx = 4 · (−1)− 5 = −4− 5 = −9

Since y = −1 and wTx = −9 < 0, this point is correctly predicted.

Page 25


