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- The Curse of Dimensionality

- Principal Component Analysis
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Preamble

Notation for Data:
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The Curse of Dimensionality

Concept:

- Refers to the problems or phenomena associated with classifying,
analyzing and organizing the data in high-dimensional spaces that
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the
data set must also have exponential growth. That means, we need a
very large dataset to maintain the density of points in the high
dimensional space.
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The Curse of Dimensionality

lllustration 1:

- For high-dimensional datasets, the size of data space is huge.

ZEQ'.'

For an exponentially large number
/

of cells, we need an exponentially

l[arge amount of training data to
ensure that the cells are not

empty.

1 . Iq
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The Curse of Dimensionality

lllustration 2:

Consider a ball of radius r defined as

B(r) = {|x[l2 < r|x € R"}

Volume of a ball of radius r

V(d) = Kpr”

Fraction of a volume between the balls of radius 1

and radius 1 — €
V(1)=V(1—¢)

V(1)

=1-(1—-¢"

o LUMS

A Not-for-Profit Uni




lllustration 2:
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The Curse of Dimensionality
lllustration 2 (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

EDENENERCIE
the shell: - (1—¢” 019 0.65 0995 1.000 1.000
the inner ball: (1 — E)D 0.9 0.81 0.35 0.005 0.000 0.000

For D = 50, 5 out of 1000 data-points would be inside the inner ball.

For D = 400, (1 —¢)P = 4.9774e — 19; almost all points lie on the surface of the
ball.

If you take a test point on the origin and D = 400, (almost) every point is at
the same (Euclidean) distance from the origin.
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The Curse of Dimensionality
lllustration 2 (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

m--nm-
the shell: I—(1-¢) 001 0.02 0096 0395 0982 0.999
the inner ball: (1 — ¢)? 099 098 0904 0.605 0018 0.0004
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Practical Datasets

- With the increase in the number of features or number of dimensions of
the feature space, data-points are never near to one another.

- Real-world data in the higher dimensional space is confined to a region
with effective lower dimensionality.
- Dimensionality Reduction

- Real-world data exhibits smoothness that enables us to make
predictions exploiting interpolation techniques.

~ For example,
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively
1 dimensional manifold in probably 1million dimensional space.
- Face recognition in an image (50 or 71 features)
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Dimensionality Reduction
Feature Extraction:

Transform existing features to obtain a set of new features using some mapping function.

X = |x1,T2,...,24]
| RN
z=|21,22,..., 2K

- The mapping function z=f(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional
space to the lower dimensional space.

-~ Mathematically, we want to find an optimum mapping z=f(x) that preserves the
desired information as much as possible.
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Dimensionality Reduction
Feature Extraction:

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.
- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as
accurately as possible in the lower-dimensional space, e.g., Principal
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates
the data in the lower-dimensional space, e.g., Linear Discriminant
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.
< LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

z = Wilx
- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data
- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:

[] Class 0
O Class 1

Most contribution of each
class lies in this direction

ure 2

t

First Principal Component

Second Principal 4\&\

Component

F
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Feature 1

LUMS Toy lllustration in two dimensions

A Not-for-Profit University




Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:
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Principal Component 1

Change of coordinates: Linear combinations
of features
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

We have n feature vectors of the form x € R?.

Note d represents the number of features.

In PCA, we want to represent x in a new space of lower dimensionality using
only k basis vectors (k < d), that is,

k
X = E i1 Vg
1=1

such that
[x — x][2
is minimized.
Here v; € R? for i = 1,2, ...,k represent the k£ number of orthogonal vectors

that form the basis, referred to as principal components, of the subspace of
dimensionality=Ek.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

How do we find the basis vectors v; € R? for i =1,2,...,k?

Steps to find Principal Components:

We have n feature vectors x; € R4, i=1,2,...,n.

Step 1: Compute Sample Mean:

Sample mean (note summtion over the number of feature vectors n)

n
1
X = — E X
n
1=1

Step 2: Subtract Sample Mean:

Subtract sample mean from each feature vector x; to obtain s;, that is,

LUMS S; =X; — X
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

Now we have n feature vectors s; € R%, i=1,2,...,n.

Calculate the Covariance Matrix as follows

1 mn
Y= — S;S;
et
This can also be expressed as
1
» = ~S8S’
n
where
S = [Sl,SQ,... ,Sn]

LUMS
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What is special about these vectors?

Zero mean; taken along all feature vectors

How do you interpret the entries of the
matrix? Spend some time and try to
understand this!

For two vectors f,g € R", covariance is defined as

n

7t = 3 (fi — ave(h)) (9 — ave(g))

i




Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Special about the Covariance Matrix:

The covarince matrix is symmetric, that is, 7 = X. (super easy to show)

The covarince matrix is positive semi-definite. (again, super easy)

Size of X i1s d x d.

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:
Carry out eigenvalue decomposition of the covarince matrix as

> = VDV’

Here the matrix V = [vy,va,...,Vvy] contains d orthogonal eigenvectors v; €
R?, referred to as principal components, that serve as the basis of R?.

Here the matrix D is a diagonal matrix with eigenvalues denoted by A1, Ao, ..., Aq4.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Step 5: Dimensionality Reduction

We wanted to find the basis vectors v; € R? for i = 1,2,..., k.
We have v, e R% for i = 1,2,...,d.
- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Construct the maapping matrix of size d x k as
W = [Vl,Vg, c o ,Vk]

to reduce the dimensionality of the feature space from R? to R* as
z =W'x

LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Using z, we can go back to R? to obtain apprxoimation of x as

k
X = E 2;V; = Wz
i=1

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further
- Enabled by orthogonality of the principal components
- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with
largest eigenvalues, that is, those dimensions capturing the variations in the data.

- PCA maps the data along the directions where we have most of the
variations in the data.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

How do we choose k?

- It depends on the amount of information, that is variance, we want to preserve in the
mapping process.

- We can define a variable T to quantify tb\is preservation of information

Z)\

d

2 A

’L:

> T

- T=1, when k=d; No reduction.
- T=0.8, interpreted as that 80% variation in the data has been preserved.
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% = [1.81,1.91]

X1

)

2.5000
0.5000
2.2000
1.9000
3.1000
2.3000
2.0000
1.0000
1.5000
1.1000

2.4000
0.7000
2.9000
2.2000
3.0000
2.7000
1.6000
1.1000
1.6000
0.9000

o LUMS
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Step 2: Subtract Sample Mean:

S1

Si:Xi—f

S2

0.6900
-1.3100
0.3900
0.0900
1.2900
0.4900
0.1900
-0.8100
-0.3100
-0.7100

0.4900
-1.2100
0.9900
0.2900
1.0900
0.7900
-0.3100
-0.8100
-0.3100
-1.0100

Dimensionality Reduction

Feature Extraction - Principal Component Analysis:
Example: d =2, n=10, k=1
Step 1: Compute sample mean:

Step 3: Calculate the Covariance Matrix:

S = [s1,S2,...,S,]
z::lzn:s :—SST
ni 1 "

s _ [0.5549 0.5539
= 10.5539  0.6449

We have divided by n. Some authors
divide by n-1. It won’t change the
principal components



Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

5 —vDV? v _ 07352 0.6779 o [0.0442 0
0.6779  0.7352 0 1.1556

Step 5: Dimensionality Reduction

Use W = |v3] (associated with the largest eigenvalue) to reduce the dimension-
ality of the feature space from R? to R as

7z = W1x
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|

3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073




Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:
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Principal Component 1

Change of coordinates: Linear combinations
of features
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Practical Considerations and Limitations:
- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal components
(directions) and therefore features are uncorrelated to each other. In other words, PCA
decorrelates the features.

- Limitation.:
- PCA does not consider the separation of data with respect to class label and

therefore we do not have a guarantee the mapping of the data along dimensions of
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which
the classes are best separated.
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