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Outline

- The Curse of Dimensionality 

- Principal Component Analysis



Notation for Data: 

Preamble



Concept: 

The Curse of Dimensionality

- Refers to the problems or phenomena associated with classifying, 
analyzing and organizing the data in high-dimensional spaces that 
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially 
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the 
data set must also have exponential growth. That means, we need a 
very large dataset to maintain the density of points in the high 
dimensional space.



The Curse of Dimensionality

Illustration 1:

- For high-dimensional datasets, the size of data space is huge.

For an exponentially large number 
of cells, we need an exponentially 
large amount of training data to 
ensure that the cells are not 
empty.

Ref: CB



The Curse of Dimensionality

Illustration 2:



The Curse of Dimensionality

Illustration 2:



The Curse of Dimensionality
Illustration 2 (Another viewpoint):

D = 1 2 10 50 400 784

0.1 0.19 0.65 0.995 1.000 1.000

0.9 0.81 0.35 0.005 0.000 0.000



The Curse of Dimensionality
Illustration 2 (Another viewpoint):

D = 1 2 10 50 400 784

0.01 0.02 0.096 0.395 0.982 0.999

0.99 0.98 0.904 0.605 0.018 0.0004



Practical Datasets

- With the increase in the number of features or number of dimensions of 
the feature space, data-points are never near to one another.

- Real-world data in the higher dimensional space is confined to a region 
with effective lower dimensionality.
- Dimensionality Reduction

- Real-world data exhibits smoothness that enables us to make 
predictions exploiting interpolation techniques.

- For example, 
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively 

1 dimensional manifold in probably 1million dimensional space.
- Face recognition in an image (50 or 71 features)



Feature Extraction:

Dimensionality Reduction

Transform existing features to obtain a set of new features using some mapping function.

- The mapping function z=𝑓(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional 
space to the lower dimensional space.

- Mathematically, we want to find an optimum mapping z=𝑓(x) that preserves the 
desired information as much as possible. 



Feature Extraction:

Dimensionality Reduction

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.

- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as 
accurately as possible in the lower-dimensional space, e.g., Principal 
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates 
the data in the lower-dimensional space, e.g., Linear Discriminant 
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data

- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Toy Illustration in two dimensions

Most contribution of each 
class lies in this direction

First Principal ComponentSecond Principal 
Component



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Change of coordinates: Linear combinations 
of features

Ignoring the Second Component/Feature



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Steps to find Principal Components: 

Step 1: Compute Sample Mean:

Step 2: Subtract Sample Mean:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

How do you interpret the entries of the 
matrix? Spend some time and try to 
understand this!

What is special about these vectors?

Zero mean; taken along all feature vectors 



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Special about the Covariance Matrix:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Step 5: Dimensionality Reduction



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Enabled by orthogonality of the principal components

- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with 
largest eigenvalues, that is, those dimensions capturing the variations in the data. 

- PCA maps the data along the directions where we have most of the 
variations in the data.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- It depends on the amount of information, that is variance, we want to preserve in the 
mapping process.

- We can define a variable T to quantify this preservation of information

How do we choose k?

- T=1, when k=d; No reduction.

- T=0.8, interpreted as that 80% variation in the data has been preserved.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:
Step 1: Compute sample mean: Step 2: Subtract Sample Mean: Step 3: Calculate the Covariance Matrix:

2.5000    2.4000
0.5000    0.7000
2.2000    2.9000
1.9000    2.2000
3.1000    3.0000
2.3000    2.7000
2.0000    1.6000
1.0000    1.1000
1.5000    1.6000
1.1000    0.9000

0.6900    0.4900
-1.3100   -1.2100
0.3900    0.9900
0.0900    0.2900
1.2900    1.0900
0.4900    0.7900
0.1900   -0.3100
-0.8100   -0.8100
-0.3100   -0.3100
-0.7100   -1.0100

We have divided by n. Some authors 
divide by n-1. It won’t change the 
principal components



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

Step 5: Dimensionality Reduction 3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Toy Illustration in two dimensions

Most contribution of each 
class lies in this direction

First Principal ComponentSecond Principal 
Component



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Change of coordinates: Linear combinations 
of features

Ignoring the Second Component/Feature



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by 
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal components 
(directions) and therefore features are uncorrelated to each other. In other words, PCA 
decorrelates the features.

- Limitation:
- PCA does not consider the separation of data with respect to class label and 

therefore we do not have a guarantee the mapping of the data along dimensions of 
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which 
the classes are best separated.

Practical Considerations and Limitations:


