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Classification

Recap:

e We assume we have training data D given by

D = {(Xlayl)a (X27y2)7 SR (Xn:yn)} C Xd X )

Binary or Binomial Classification:

e V={0,1Yor Y ={-1,1}

Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.

Multi-class (Multinomial) Classification:

e V={1,2,..., M} (M-class classification)

Emotion Detection.

Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.
Speaker Identification from Speech Signal.

Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

LUMS
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Linear Classifiers

Overview:

Linearly Separable NOT Linearly Separable

- Linear Separability

(24

- Linear Classifiers
h(x) = 0" x + 6,

e line in 2D, plane in 3D, hyper-plane in higher dimensions.

()
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Perceptron Classifier
McCulloch-Pitts (MP) Neuron:

- McCulloch (neuroscientist) and Pitts (logician) proposed a
computational model of the biological neuron in 1943.

Biological Neuron (Simplified illustration):

Dendvrites: input node, receive signal
from other neurons

Synapses: connected to the
dendrites of other neuros

/

Soma: combines and 0
processed signal

Axon: output node, transmits
processed signal

- Neuron is fired or transmits the signal when it is activated by the combination of input signals.

LUMS
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Perceptron Classifier
McCulloch-Pitts (MP) Neuron:

e d number of boolean inputs z), (2 ... z(d ¢ {0,1}.

e Boolean output, y € {0,1}.
e If sum of inputs is less than #, the output is zero and one otherwise.

e ( is a thresholding parameter that characterizes the neuron.

: (1
e Mathematically;
r d 2
1 if Y a2 >0 z y
Yy = ¢ ijl
0 if S a® <
\ i=1
z(d
e Idea: Fire the nueron if at least # number of inputs are active.
Aggregation, Summation Thresholding

LUMS
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Perceptron Classifier

McCulloch-Pitts Neuron (MP) - Examples:
e OR of two inputs.

x(z)d’s
() 0.1) (1,1)
{1 if ) 4 2(2) > 1 I *
0 if M 4+ 232 <1 (1) (2) _
oW a =1
e
¢ o y
x(2) AN
(0,11 (1,1
if ) 4+ 22 > 9 * ‘ 2+ 4 2(2) =9
if 242 <2
® ° >
LUMS 08 (@0 L0
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Perceptron Classifier

McCulloch-Pitts Neuron (MP) - Examples:
e OR of three inputs.

if M) 4 22 4 20) <1

if M 423 426 >3
if M 4+ 232 4 20 <3

(3

i

LUMS
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Perceptron Classifier
McCulloch-Pitts (MP) Neuron — Limitations:

- Can classify if inputs are linearly separable with respect to the output.

- How to handle the functions/mappings that are not linearly

- Can handle only boolean inputs.

- Gives equal or no weightage to the inputs

- How can we assign different weights to different inputs?
- We hand -code threshold parameter

- Can we automate the learning process of the parameter?

- To overcome these limitations, another model, known as
perception model or perceptron, was proposed by Frank
Rosenblatt (1958) and analysed by Minsky and Papert (19649).

- Inputs real valued, weights used in aggregation

- Learning of weights and threshold is possible.

LUMS
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separable e.g., XOR?

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo’
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-|
bryo of an electronic computer|
today that it expects will be

ble to walk, talk, see, write,

c




Perceptron Classifier

Perceptron:
e d number of real-valued inputs (1, z(?), ... (¥ € R. (Difference from MP Neuron)

e Boolean output, y € {0,1}.

e If sum of inputs is less than #, the output is zero and one otherwise.

e Threshold 0 and weights wq,ws, ..., wy are model parameters. (Difference from MP Neuron)

(1)

d , ( d :
(2) =1 — i=1
T d _ d .
if Swiz® <0 0 if S wiz® -0 <0

i=1 \ i=1

p(d) ——— wy e O, threshold represents a bias here.

e ( can be considered or absorbed as a weight.

e This will make aggregation /thresholding independent of any parameters.

A Not-for-Profit University ~ Source: Perceptron: The Artificial Neuron (An Essential Upgrade To The McCulloch-Pitts Neuron) | by Akshay L Chandra | Towards Data Science
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Perceptron Classifier

Note:
Threshold is zero here.

Perceptron: wo = —0

20 —1 1

Threshold has been absorbed as a model weight.

x(l) wl
‘ d ‘ d ,
1 if Zwix(z)—ﬁz(]or Zwix(z)ZO
2(2) Wo Y = 4 =1 | =0 |
0 if Swiz® —0<0or Y wz® <0
\ =1 1=0

Alternative (Compact) Representation:

o x =[O (M @]

® W — [wo,wl,...,wd]

LUMS
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Perceptron Classifier

Classification using Perceptron:
T

e Since w' x = 0 represents a hyper-plane in the d-dimensional space, we
can use perceptron as a binary classifier if the classes are linearly separable.

20 = 1

UJO:—B

e How is this different from MP neuron?

()
e Inputs are real-valued. “ {1 it wi'x>0
/y =

acfz\ 0 if wlix <0

e We have real-valued weights in the process of aggregation.
w(d wqd

e We can learn the weights.

e Remark:
If classes are labeled as 1 and -1
)1 it wix >0
y_{—1 it wix<0

We often write output as

T

y = sign(w” x)

sign(.) returns sign of the argument.

LUMS
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Outline

- Perceptron and Perceptron Classifier

- Logistic Regression Classifier
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Logistic Regression

Overview:
- kNN: Instance based Classifier

- Logistic Regression: Discriminative Classifier
- Estimate P(y|x) directly from the data

- ‘Logistic regression’ is an algorithm to carry out classification.
- Name is misleading; the word ‘regression’ is due to the fact that the method attempts
to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.

e Mathematically, model is characterized by variables 6.

he(x) = P(y|x) Posterior probability

- A simple form of a neural network.

LUMS
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

1 0o
() 01 > S he(x) > 0 class 1
he(x) <0 class 0
(%) 02 ho(x) = 6y + 6'x
R? — R
Real-valued output here!
2(d) 0,

V
LUMS Regression
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).
- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic/Sigmoid function

1 0 _ 1
0 U(Z) T 14e—=
ey 01
3 > o) — ——
14+e— e ()
(%) 02 ho(x) = 0y + 6'x
R?—> R
Real-valued output here!
We want probability; Activation function

LUMS between O and 1!
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Logistic Regression
Logistic (Sigmoid) Function

1
o(z) =
1+4+e~ .
e Interpretation: maps (—oo,00) to (0,1) ()
e Squishes values in (—o0,0) to (0,1)
e It is differentiable. 0.5
e Generalized logistic function:
L
U(Z) - 1+ e—k(z—20) I | -
6 -4 -2 0

e Sigmoid: because of S shaped curve

LUMS
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Logistic Regression
Change in notation:

- Treat bias term as an input feature for notational convenience.

1 0,
(1) 0, )
2 > o) — he(x)=0(0"%)
_ 1
7(2) 05 QTX _ 1+e_9Tx
R¢Y 5 R
2(d) 0,
~ ~—
X 0
R Linear function.
LUMS Linear Regression.

A Not-for-Profit University
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Logistic Regression
Classification:

1 —— 6o

eD)

6

3;(2) 92 BTX T 1+e—9Tx

(@)

04

e hg(x) = P(y = 1|x) represents the probability of class membership.
e Assign class by applying threshold as

j= {Class 1 o(0"x) > 0.5

Class 0 otherwise

e 0.5 is the threshold defining decision boundary.

e We can also use values other than 0.5 as threshold.

LUMS
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Outline

- Perceptron and Perceptron Classifier
- Logistic Regression Classifier
- Neural Networks

- Neural networks connection with perceptron and logistic regression
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Neural Networks

Connection with Logistic Regression and Perceptron:
e d number of real-valued inputs =, 2, ... (¥ € R.

e Boolean output, y € {0,1}.

Perceptron Model:

1 b
Activation Function
(1) w1 _
>, > ] @ —
T 0 : e
0 if wix+b<0
RY -5 R

x(d) wd

LUMS
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Neural Networks

Connection with Logistic Regression and Perceptron:
e d number of real-valued inputs £, 22, ... 2@ ¢ R.

e Boolean output, y € {0,1}.

Logistic Regression Model:

b Activation function is
Logistic/Sigmoid function

x(l) wl
> >  o(Y)
e ws wix+ b
RY -5 R
x(d) wd

Logistic Regression Model, aka Sigmoid Neuron
< LUMS < < <

A Not-for-Profit University




Neural Networks
Connection with Logistic Regression and Perceptron:

Activation Function
vs Sigmoid Neuron

1- -
0:5
| | o | l |
—5 —4 —2 0 2 il &
Weighted sum of inputs + bias
wix+ b

LUMS
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Neural Networks
Neuron Model:
Compact Representation:

1
(e
7 (2)=— g(WTX +b)

: g - activation function.
o (d)—

More Compact Representation:

(e

g(w'x +0)

I
(2) —

o (d)—

e Neuron model: Characterized by weights, bias and activation function.
e Weights w, bias b - model parameters e Activation function ¢ - hyperparameter
LUMS

A Not-for-Profit University




Neural Networks
Neural Networks - Infamous XOR Problem:

e (1969) Minsky and Papert showed that a perceptron cannot classify XOR

output.

xsl
1 x9 XOR 0.1 (1.1)
0 0 0 O O ldea:
1 0 1 Learn AND and OR
0 1 1 boundaries.
1 1 0

O O - O
(0,0) (Lo (0,0) (1,0)

e (Classes are not linearly separable: linear classifier cannot be used.

e We can either transfrorm features or project the data to higher dimen-
sional space.

e We can however build a network of linear classifiers.

LUMS
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Neural Networks
Neural Networks - Infamous XOR Problem:

b=1

e This is a neural network; a network of perceptrons, aka multi-layer perceptron (MLP).

LUMS
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Neural Networks
Neural Networks

e A neural network is a set of neurons organized in layers.

- Output is a non-linear function
- of a linear combination
—_ . .
- of non-linear functions
- of a linear combination of inputs

Each unit in the network is called

-~ -~ -~ a neuron and the network of

Input layer Hidden layer  Output layer neurons is called Neural Network.

e Given the input and parameters of the neurons, we can determine the
output by traversing layers from input to output. This is referred to as
LUMS

Forward Pass.
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Neural Networks

Neural Networks:

Example: 3-layer network, 2 hidden layers

(1) : : :
- Output is a non-linear function
- of a linear combination
2(2) - of non-linear functions
- of linear combinations
- of non-linear functions
2(3) - of linear combinations of inputs

e We do not count the input layer because there are no parameters assoic-
taed with it.

e Neural networks with neurons are also referred to as MLPs but we will
refer to the network as MLP only when it is constructed using perceptrons.

Feedforward Neural Network: Output from one layer is an input to the next layer.

LUMS
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Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: XOR example

e LUMS
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Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: Example (Sigmoid neuron)

Output

{0.50)—> | (0.50)—>
., -. \ o, -.
y ) y=1 1 . <
e bias=0.5 indicated. e bias=0.5 indicated.
e weight for x is very large. e weight for y is very large.
e weight for y is zero. e weight for x is zero.

LUMS
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Neural Networks

What kind of functions can be modeled by a neural network?

Intuition: Example (Multi layer)

. Weightéd output from hidden layer

(e {0300 h=06

k“'\-. L / " e
=V R ' Weightéd output from hidden layer

. _40.40 h=0.30

kY

---z.-"/ z 030 1
10.60)

|
Weighted output from hidden layer

o
a‘ (!
\
.

Yo %0.70/

A r

LUMS
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Neural Networks
What kind of functions can be modeled by a neural network?

Universal Approximation Theorem (Hornik 1991):

“A single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units.”

- The theorem results demonstrates the capability of neural network, but this does not
mean there is a learning algorithm that can find the necessary parameter values.

- Since each neuron represents non-linearity, we can keep on increasing the number of
neurons in the hidden layer to model the function. But this will also increase the
number of parameters defining the model.

- Instead of adding more neurons in the same layer, we prefer to add more hidden

layers because non-linear projections of a non-linear projection can model complex
functions relatively easy.

LUMS
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Outline

- Perceptron and Perceptron Classifier
- Logistic Regression Classifier
- Neural Networks
- Neural networks connection with perceptron and logistic regression

~ Neural networks ‘Forward Pass’
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Neural Networks

Neural Networks — Notation:
Single Neuron:

(s

g(w'x +0)
(2= - z=wix+b Pre-activation
- 9(2) Activation
7 (d)—
e If we stack n training data in a matrix X of size d x n, that is, X = [x1,X2,...,X;]

e Using X and by defining 1 a row vector of ones of length n, we can define
‘pre-activatation’ operation w’x + b for all inputs compactly, denoted by

Z as c c c .
7z =wlX+b1 Pre-activation Linear transformation

(Ixn) (Ixd)(dxn)+(1xn) (Aggregation)
e Using activation function g, we obtain

a=g(z) Activation Non-linear transformation

e Activation function is operating on each entry of z.

LUMS e a-arow vector of length n; i-th entry represents an output for i-th input.

A Not-for-Profit University




Neural Networks
Neural Networks — Notation:

e [ - number of layers.

e Number of nodes in the /-th layer, mlf]

. agg] denotes the output of i-th node in the ¢-th layer. o al‘) - vector of outputs of ¢-th node.
e all = x input layer.
o alll =y output layer.
Example: 3-layer network, 2 hidden layers
* L=3 1
|
2
e mil =4 ml2l =3 mbBl =1 a[lo} 21 a[l]
ol
2
2
J7 (2@ as!
o]
3
2
ag)} 2 (3) ag}
ol
4

LUMS
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Neural Networks

Neural Networks — Notation:

° W,Ee] and b,,[;ﬂ denote the weight and bias associated with the i-th node in

the /-th layer respectively.

o fw% denote the weight and bias associated with the 7 — th input of the

:-th node in the /-th layer respectively.
Example: 3-layer network, 2 hidden layers

Layer 1 output

1 1 1 g
a) ' =g(z1), # =wy
(1) [2]
T aj T
e a5 =g(z5), 2 =wj
2
z(2) a[22] a[f‘]
[1] 1] [1] [
ag} ay- =g(z3), 23 =wy
(3) 2]
X (g T
1 1 1 1
ol ap) =g(z), z =wy

LUMS

A Not-for-Profit University




Neural Networks
Neural Networks — Notation:
Layer 1 output

[1] [1] [1] e [1] ay'
a; " — 9(31 ), zi = Wi X+by 0] (1)
aq X
T [1]
a[gl] = g(zél]), zgl] = wg] X + b[gl] @2
MORNFC)
[1] [1] [1] nE [1] "fg”
ag- =g(z3°), 23 =ws X+bg 0 (3
a
[1] [1] [1] e [1] 3 ay’
a, 29(24 )a Z, =W, X+by
Ty " T T
W " A7)
0 witl’ " 0k " LT
W = 1] _ |92 1] _ | ~2 1] _
T, | b= nT, | %2 T | T alll =
W3 . b 25
T T
_WL” _ _bgl] | _ZE] _

LUMS
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e WU and bl! are the parameters of the first layer.

ol
a[22] a[13] —
op

2 — wily 4 plU

AU — Wilaol | il




Neural Networks
Neural Networks — Forward Pass:

all — g(z11), U — willx ¢ pll all
o’ (a® af!
zH — willglol 4 plil oY
S0 (@) ol2
e ). What is the size of WI? 2 (1]
as
A. No. of nodes x No. of inputs. 4 x 3 Lo (2B al?
3
No. of nodes x No. nodes in the previous layer. al”
e Q. Can we write output of second layer using the notation we have defined?
a2l — g(z[2]) 72 — W2l 4 pl2] e ). What is the size of W27 3 x4

e ). What is the size of WBI? 1 x3

all = gz, 2Bl = WwBlal2 4 pB] e WU and bl are the parameters of the ¢-th layer.

e Using these equations, we can determine the output given input and pa-
LUMS

rameters of layers (Forward Pass).
A Not-for-Profit University
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Neural Networks
Neural Networks — Forward Pass Summary:

alll = g(z[1), 1 — Wity 4 plt a;
OREY o2
1
21 — Wil 4 pl ol
(A4x1)=(4x3)(3x1)+(4x1) J (2@ a;
[1]
s
alZl = g(z2), z® = wlall 4 pl2 20 £(3) o2
[1]
Bx1)=(3x4)(4x1)+(3x1) Ay

al¥l — g(zB), 2B — Wl 4 pB

(1x1)=(1x3)Bx1)+(1x1) e How many parameters do we have by the way?

I 1 h . . . .
¢ In general, we have e This formulation is for one input x.

all — g(z19), S0 — Wllale-1] 4 8

for ¢ =1,2,..., L, where al¥ = x.

LUMS
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Neural Networks
Neural Networks — Forward Pass — Incorporating all Inputs:

alll = g(z[l])a z!! = Wilx + plt ] (@ - [2]
a; Hi a;
o1
z[1 — Wltl{lol 4 pli o @B ’ o2 ol —s
Ax1)=(4x3)(3x1)+(4x1) all
Recall: L (@@ " o0
) g(wTx + )
2(2) 2=wIx+b
: : 9(2) Al = gz, z[ — wilx 4 pl]
(d—
7z — WAl 4 plil
e For single neuron, we developed the following formulation
incorporating all inputs simultaneously. (4xn)=(4x3)3xn)+(4xn)
z=w!X+bl
a=g(z) e a - a row vector of length n;
LUMS i-th entry represents an output for i-th input.

A Not-for-Profit University
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Neural Networks
Neural Networks — Forward Pass Summary — All Inputs:

Al = gz, 7zl — wilx 4 plt!

71 — WAl 4 plil
(Adxn)=4x3)(3xn)+ (4 xn)

Al = gz, 7z = wRIAl 4 pl2]
(B3xn)=(3x4)(4xn)+(3xn)

ALl = gz, 7zB — WwBIAR 4 plB]

(Ixn)=(1x3)(3xn)+(1xn)

LUMS
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a;

oy’ (ol ar’
1
2

a[20] ne) 6[22] ag?’] —_—

i
&

2

0 (2 ay
i
4

e In general, we have

A — gz ozl Z WAl fpl f=1,2,... L




Outline

- Perceptron and Perceptron Classifier
- Logistic Regression Classifier
- Neural Networks
- Neural networks connection with perceptron and logistic regression
- Neural networks ‘Forward Pass’
- Learning neural network parameters

- Back Propagation.
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Neural Networks
Learning Weights:

e Given the training data, we want to learn the weights (weight matri-
ces+bias vectors) for hidden layers and output layer.

] o Example:
Notation revisit:
e [ - number of layers. ay’
2]
e Number of nodes in the ¢-th layer, m!¥ o (@ - “
G
° O;Eg] denotes the output of i-th node in the ¢-th layer. L0 (@ o2 altl —»
2
[1]
e al/l output of ¢-th layer, al% =x. a3
0] [ 23) al?!
(L] — ] a3 3
e al™l = y output layer. all
) Wy] and by] denote the weight and bias associated with the i-th node in
the /-th layer respectively. w il w2 W3l
o [ ] denotes the weight associated with the j-th input of the i-th node in
bl b2l b3

the (-th layer.

Parameters we
need to learn!

LUMS
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Neural Networks
Learning Weights:

e We assume we have training data D) given by

D = {(Xlayl)a (X27y2)7 sy (Xnayn)} C Xd X y

e Consider a network with d nodes (features) at the input layer, 1 output
node and any number of hidden layers.

e Define the loss function (for regrgssion problem): We use log loss here if we have a

1 2 e >
L= = Ji — Ui classification problem and
2 ; ( ) output represents probability.

where 1; denotes the output of the neural network for i-th input.

e We can use gradient descent to learn the weight matrices and bias vectors.

e Given our prior knowledge, output ¥ is a composite function of input x.
Therefore, it is continuous and differentiable and we can use chain rule to
compute the gradient.

We use a method called ‘Back Propagation’ to implement the chain rule for

LUMSthe computation the gradient.

A Not-for-Profit University
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Neural Networks
Back Propagation — Key Ildea:

e We compute the loss function using forward pass.

o~

xi Ui

ap
o (a® al’
1]
as n .
1
o (2@ ag] a[13] —— = Z (@z . yi)2 The welgl«ts are the Ohly
] 2 parameters that can be
o ’ 2] modified to make the loss
a . .
a . ’ function as low as possible.
4

Y Learning problem reduces to the question
e Gradient descent: fwy; = ,wy; —a—mr of calculating gradient (partial derivatives)
’ ’ ow; ; of loss function.

e We compute the derivative by propagating the total loss at the output
node back into the neural network to determine the contribution of every
node in the loss. (Back Propagation)

LUMS

A Not-for-Profit University




Neural Networks

Back Propagation — Example:
e 2 layer with 2 neurons in the hidden layer, 2 inputs, 2 outputs network.

e Assuming sigmoid as activation function, that is, g(z) = o(2).

=)
D
|

e (Given training data
M =0.05 2@ =0.1, y® =0.01, y® =0.99
e Initial values of weights and biases:

wil =0.15, wi'h = 0.2, wy} =0.25, whh = 0.3, b1 =0.35, b)) = 0.35.

wiy = 0.4, w’y = 045, wy) = 0.5, wyy = 0.55, b)') = 0.6, by = 0.6,
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Neural Networks

Back Propagation — Example:

L a[lm — gy e Loss function
(noting output is a vector):

w2 w? 1. -
1 G, o £=lE" —y)? = @2 -y
il 2 1 2
£ = 2 1(0.01,0.99) — (0.7514,0.7729)|[*= 0.2984
Forward Pass
1 1 1 1 1
NG N RO K A = wilz® 4 wiha® 4o = 0.3775, ol = ¢(0.3775) = 0.5933
T T
alll = g2, oM = Wil x 4 pll ) = wy) x+ by =0.3925, ab) = ¢(0.3925) = 0.5969
2 2 2 21T 2 T
o = g(z), 2 =wi x+b] 2 =wib x+b =1.106, qf = g(1.106) = 0.7514 = (!
2 2 2 91T 2 T
o) =g(a"), A =wi x4 2 = wy x+by =1.225, a) = g(1.225) = 0.7729 = §*

Nothing fancy so far, we have computed the output and loss by traversing neural network.
LUMS Let’s compute the contribution of loss by each node; back propagate the loss.

A Not-for-Profit University
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Neural Networks
Back Propagation — Example:

1
o>t
2 2
2] a[2] — y?
w
2.9

: oL
e Consider a case when we want to compute

aw?’]l
e Traverse the path from the loss function back to the weight wﬂ
1 oc
L= IGD -y @) - @ -y @) T
gV = o (2) aﬁ] - a(?(ﬁl) 3y([:]) azi]] o -
Owy 3 Y 0z Owy; i
o = wie) +wihey + b)) — 0.0821 02

LUMS wis
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= 0.5933



Neural Networks
Back Propagation — Example:

Wi g a[2} —_— y(l)
. Loy e -2 (222
o > 2 L=51@7 =y2)" =@ =y 7))
U)l 2,1 2] (2)
2 a[2 —_— Y
Wa o
oL

e Consider a case when we want to compute 0
owy 1
e Traverse the path from the loss function back to the weight fw[ll]l There

are two paths from the output to the weight wgl]l In other words, wgl]l is

contributing to both the outputs.
0L _ oL 95w 827 aal! 9 ar 95@ 827 all 92
- +

[1] - =
Owyy oy 8z£2] 6a[11] 8,%1] 8w£1,]1 0y 8,%2] 80,[11] 82{1] awﬁ]l

e Looking tedious but the concept is very straightforward. I encourage you
to write one partial derivative using the same approach to strengthen the
concept.
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