LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I Quiz 04 - Section 2 - Solutions

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 20 minutes	

Question 1 (6 marks)

For the circuit given below, use the nodal analysis to determine the voltage V_x .

Solution:

Considering the bottom node as ground and applying KCL at the upper node gives

$$\underbrace{\frac{V_x}{100}}_{I_y} + \frac{V_x}{50} + \frac{V_x - 0.2V_x}{40} - 25I_y - 0.6 = 0, \implies \frac{V_x}{100} + \frac{V_x}{50} + \frac{0.8V_x}{40} - 25\frac{V_x}{100} = 0.6$$
$$\underbrace{\frac{V_x}{100} + \frac{V_x}{50} + \frac{V_x - 0.2V_x}{40} - 25\frac{V_x}{100} = 0.6, \qquad \Longrightarrow -\frac{V_x}{5} = 0.6 \implies V_x = -3V.$$

Question 2 (4 marks)

Use either nodal, loop or source transformation to determine the current through the 8Ω resistor.

Solution:

By transforming the current to voltage source and transforming voltage to current and back to voltage after solving parallel combination of 9Ω and 2Ω , we can obtain a circuit with voltage source of voltage 820/11V, 8Ω resistor and $117/11\Omega$ resistor. By applying voltage division rule, we obtain the voltage, denoted by V_8 , across 8Ω resistor with higher potential on the right hand side as

$$V_8 = 4V$$