LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

\mathbf{EE}	240	Circuits	I
Qu	uiz 4	Solution	L

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 15 minutes	

Question 1 (7 marks)

Using nodal analysis, formulate circuit equations that can be used to solve for the node voltages V_1 , V_2 , V_3 , and V_4 in the given circuit. We require you to formulate three equations in terms of V_1 , V_2 , and V_3 . Note that $V_A = V_3 - V_2$.

Solution:

Node 1: $3 + \frac{V_1}{4} + \frac{V_1 - V_2}{6} - I = 0$ Node 2: $\frac{V_2 - V_1}{6} + \frac{V_2 - 2.V_A}{10} + \frac{V_2 - V_3}{8} = 0$ Node 3: $\frac{V_3}{1} + \frac{V_3 - V_2}{8} + I - 4 = 0$

Node 4: $V_4{=}\ 2\ V_A{=}\ 2$. $(V_3$ - $V_2)$

Super node equation: $V_1 - V_2 = 12$

Add the equations for nodes 1 and 3 to eliminate I: $3 + \frac{V_1}{4} + \frac{V_1 - V_2}{6} + \frac{V_3}{1} + \frac{V_3 - V_2}{8} - 4 = 0$

The three equations required:

$$\frac{V_1}{4} + \frac{V_1 - V_2}{6} + \frac{V_3}{1} + \frac{V_3 - V_2}{8} = 1$$

$$\frac{V_2 - V_1}{6} + \frac{V_2 - 2.(V_3 - V_2)}{10} + \frac{V_2 - V_3}{8} = 0$$
$$V_1 - V_2 = 12$$

Question 2 (3 marks)

Apply source transformation to calculate ${\cal I}_o$ in the following circuit.

Solution:

The resistor in series with the 0.5A current source is completely redundant, so it can be removed. Applying source transformation:

We want to calculate I_o . For that, we need V_o . To find V_o , we simplify the circuit: $V_o = 0.95 * 27.3 = 25.9V$ $I_o = \frac{V_o}{600} = 0.043A$