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Dimensionality Reduction

Why?
- Increasing the number of iz?’puts or features does not
always improve accuracy of classification. N
2
©
- Performance of classifier may degrade with the inclusion &
of irrelevant or redundant features. =
o
- Curse of dimensionality; “Intrinsic”’ dimensionality of the >
data may be smaller than the actual size of the data. dimensionality

Benefits:
- Improve the classification performance.

- Improve learning efficiency and enable faster classification.

- Better understanding of the underlying process mapping inputs to output.
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Dimensionality Reduction
Feature Selection and Feature Extraction:

Given a set of features, reduce the number of features such that
“the learning ability of the classifier” is maximized.

X = |r1,T2,...,2T4]

Feature Selection: Feature Extraction:

Transform existing features to obtain a set of

Select a subset of the existing features. ; , ;
new features using some mapping function.

X = |x1,T2,...,24] X = [x1,%2,...,T4]
| | | IR
Z:[.Sl?il,ﬂj‘iz,...,l‘ik] ZI[Zl,Zg,...,Zk]
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Dimensionality Reduction
Feature Selection:

Select a subset of the existing features.

X = |x1,T2,...,2T4]
Z — [xil,xiz,...,xik]

Select the features in the subset that either
improves classification accuracy or maintain same
accuracy.

How many subsets do we have?

How do we choose this subset?
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Feature Selection:

Example:

o LUMS
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X = [3717 L2, X3,L4, 335]
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* Source: A tutorial on genomics by Yu (2004).
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Dimensionality Reduction
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O O O O = ek e

Data set:
- Five Boolean features
- Y=xy (or) X,
= (not) x,
= (not) xs

Optimal subset:
{xl) XZ} or {xl) XS}

Optimization in space of all feature subsets
would have

2¢ possibilities

Can’t search over all possibilities and
therefore we rely on heuristic methods.



Dimensionality Reduction

Feature Selection:

How do we choose this subset?

- Feature selection can be considered as an optimization
problem that involves

- Searching of the space of possible feature subsets

- Choose the subset that is optimal or near-optimal with
respect to some objective function

- Filter Methods (unsupervised method)
- Evaluation is independent of the learning algorithm

- Consider the input only and select the subset that
has the most information

- Wrapper Methods (supervised method)

- evaluation is carried out using model selection the
machine learning algorithm

!

D = {(Xlayl)a (X27y2)7- SR (Xnayn)} g Xd X y

/ Feature Subset Selection

Search subset

Feature
Subset

Objective Function

.

~

Goodness

/

!

_ k
_ Train on selected subset and estimate ervor on P = 1z1,01),(22,92), - -+, (Zn,yn)} € X" X Y

validation dataset
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Dimensionality Reduction

Feature Selection:

How do we choose this subset?
Filter Methods

D = {(Xlayl)a (X2ay2)a SR (Xnayn)} C X4 x Y

/ Filter Feature Selection

Search subset

Feature

Subset Content

Objective Function

\

\

Information

/

D = {(Zlayl)a (Z2ay2)7 R (Znayn)} - R Y
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Wrapper Methods

D = {(x1,y1), (Xx2,¥2)s- -, (Xn,Yn)} S X x Y

/ Wrapper Feature Selection \

Search subset

Prediction
Accuracy

Feature
Subset

Learning Algorithm

\_ /

D = {(Zlayl)v (ZZay2)J R (Znayn)} - R Y




Dimensionality Reduction
Feature Selection:

Filters Method:
- Univariate Methods
- Treats each feature independently of other features

- Calculate score of each feature against the label using the following metrics:
- Pearson correlation coefficient
- Mutual Information
- F-score
- Chi-square
- Signal-to-noise ratio (SNR), etc.

- Rank features with respect to the score

- Select the top k-ranked features (k is selected by the user)
< LUMS
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Dimensionality Reduction
Feature Selection:

Filters Method — Ranking Metrics:
- Pearson correlation coefficient (measure of linear dependence)

Denote feature values by a vector a € R™ (Note n is the number of points).

Denote labels by a vector y = [y1, 42, - - -, Yn]-

Define Pearson correlation coefficient as

.-T--
a'y
a]l2y]|2
Here

a=a—avg(a)l

is a demeaned vector and is obtined by subtracting mean of a vector from it.

- Signal-to-noise ratio (SNR)
_ avg(a) —avg(y)
SNR = std(a) — std(y) ’

LUMS where std denotes the standard deviation of the vector.
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Dimensionality Reduction
Feature Selection:

Wrappers Method:
- Forward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with empty set as feature subset

- Try adding one feature from the remaining features to the subset
- Estimate classification or regression ervor for adding each feature
- Add feature to the subset that gives max improvement

- Backward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with full feature set as subset

- Try removing one feature from the subset

~ Estimate classification or regression error for removing each feature

- Remove/drop the feature that gives minimal impact on ervor or reduces the error
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Dimensionality Reduction
Feature Extraction:

Transform existing features to obtain a set of new features using some mapping function.

X = |x1,T2,...,24]
| RN
z=|21,22,..., 2K

- The mapping function z=f(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional
space to the lower dimensional space.

- Mathematically, we want to find an optimum mapping z=f(x) that preserves the
desired information as much as possible.
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Dimensionality Reduction
Feature Extraction:

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.
- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as
accurately as possible in the lower-dimensional space, e.g., Principal
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates
the data in the lower-dimensional space, e.g., Linear Discriminant
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.
< LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

z = Wilx
- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data
- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:

[] Class 0
O Class 1

Most contribution of each
class lies in this direction

ure 2

t

First Principal Component

Second Principal 4\&\

Component

F

3 | | | | | |
-2 0 2 4 6 8 10

Feature 1

LUMS Toy lllustration in two dimensions
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Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Geometric Intuition:

6 T T 6
[J Class 0
O Class 1
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Principal Component 1

Change of coordinates: Linear combinations
of features
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

We have n feature vectors of the form x € R?.

Note d represents the number of features.

In PCA, we want to represent x in a new space of lower dimensionality using
only k basis vectors (k < N), that is,

k
X = E i1 Vg
1=1

such that
[x — x][2
is minimized.
Here v; € R? for i = 1,2, ...,k represent the k£ number of orthogonal vectors

that form the basis, referred to as principal components, of the subspace of
dimensionality=Ek.
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

How do we find the basis vectors v; € R? for i =1,2,...,k?

Steps to find Principal Components:

We have n feature vectors x; € R4, i=1,2,...,n.

Step 1: Compute Sample Mean:

Sample mean (note summtion over the number of feature vectors n)

n
1
X = — E X
n
1=1

Step 2: Subtract Sample Mean:

Subtract sample mean from each feature vector x; to obtain s;, that is,

LUMS S; =X; — X

A Not-for-Profit University




Dimensionality Reduction

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

Now we have n feature vectors s; € R%, i=1,2,...,n.

Calculate the Covariance Matrix as follows

1 mn
Y= — S;S;
et
This can also be expressed as
1
» = ~S8S’
n
where
S = [Sl,SQ,... ,Sn]
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What is special about these vectors?

Zero mean; taken along all feature vectors

How do you interpret the entries of the
matrix? Spend some time and try to
understand this!

For two vectors f,g € R", covariance is defined as

n

7t = 3 (fi — ave(h)) (9 — ave(g))

i




Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Special about the Covariance Matrix:

The covarince matrix is symmetric, that is, 7 = X. (super easy to show)

The covarince matrix is positive semi-definite. (again, super easy)

Size of X i1s d x d.

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:
Carry out eigenvalue decomposition of the covarince matrix as

> = VDV’

Here the matrix V = [vy,va,...,Vvy] contains d orthogonal eigenvectors v; €
R?, referred to as principal components, that serve as the basis of R?.

Here the matrix D is a diagonal matrix with eigenvalues denoted by A1, Ao, ..., Aq4.

LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Step 5: Dimensionality Reduction

We wanted to find the basis vectors v; € R? for i = 1,2,..., k.
We have v, e R% for i = 1,2,...,d.
- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Construct the maapping matrix of size d x k as
W = [Vl,Vg, c o ,Vk]

to reduce the dimensionality of the feature space from R? to R* as
z =W'x

LUMS
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Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Using z, we can go back to R? to obtain apprxoimation of x as

k
X = E 2;V; = Wz
i=1

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further
- Enabled by orthogonality of the principal components
- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with
largest eigenvalues, that is, those dimensions capturing the variations in the data.

- PCA maps the data along the directions where we have most of the
variations in the data.

o LUMS

A Not-for-Profit Univer:



Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

How do we choose k?

- It depends on the amount of information, that is variance, we want to preserve in the
mapping process.

- We can define a variable T to quantify tb\is preservation of information

Z)\

d

2 A

’L:

> T

- T=1, when k=d; No reduction.
- T=0.8, interpreted as that 80% variation in the data has been preserved.
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% = [1.81,1.91]

X1

)

2.5000
0.5000
2.2000
1.9000
3.1000
2.3000
2.0000
1.0000
1.5000
1.1000

2.4000
0.7000
2.9000
2.2000
3.0000
2.7000
1.6000
1.1000
1.6000
0.9000

o LUMS
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Step 2: Subtract Sample Mean:

S1

Si:Xi—f

S2

0.6900
-1.3100
0.3900
0.0900
1.2900
0.4900
0.1900
-0.8100
-0.3100
-0.7100

0.4900
-1.2100
0.9900
0.2900
1.0900
0.7900
-0.3100
-0.8100
-0.3100
-1.0100

Dimensionality Reduction

Feature Extraction - Principal Component Analysis:
Example: d =2, n=10, k=1
Step 1: Compute sample mean:

Step 3: Calculate the Covariance Matrix:

S = [s1,S2,...,S,]
z::lzn:s :—SST
ni 1 "

s _ [0.5549 0.5539
= 10.5539  0.6449

We have divided by n. Some authors
divide by n-1. It won’t change the
principal components



Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

5 —vDV? v _ 07352 0.6779 o [0.0442 0
0.6779  0.7352 0 1.1556

Step 5: Dimensionality Reduction

Use W = |v3] (associated with the largest eigenvalue) to reduce the dimension-
ality of the feature space from R? to R as

7z = W1x

o LUMS
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|

3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073




Dimensionality Reduction
Feature Extraction - Principal Component Analysis:

Practical Considerations and Limitations:
- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal components
(directions) and therefore features are uncorrelated to each other. In other words, PCA
decorrelates the features.

- Limitation.:
- PCA does not consider the separation of data with respect to class label and

therefore we do not have a guarantee the mapping of the data along dimensions of
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which
the classes are best separated.

LUMS
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Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk
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