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Bayesia N Lea rning Fra mework
Overview:

- In machine learning, the idea of Bayesian Learning is to
use Bayes Theorem to find the hypothesis function.

Example: Test the fairness of the coin!

Frequentist Statistics:

- Conduct trials and observe heads to compute the probability P(H).
- Confidence of estimated P(H) increases with the number of trials.

- In frequentist statistics, we do not use prior (valuable) information to improve our Hypothesis.
For example, we have information that the coins are not made biased.

Bayesian Learning:

- Assume that P(H)=0.5 (prior or beliefs or past experiences).
- Adjust the belief P(H) according to your observations from the trials.
- Better hypothesis by combining our beliefs and observations.

- Each training data point contributes to the estimated probability that a hypothesis is corvect.

- More flexible approach as compared to learning algorithms that eliminate a given hypothesis
inconsistent with any single data point.
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Bayesian Learning Framework

Overview:
Supervised Learning Formulation:

Data: D = {(Xlayl)a (X2Jy2))' < (Xnayn)} C Xd X y

We call the set of possible functions or candidate models (linear model, neural
network, decision tree, etc.) “the hypothesis class”.

Denoted by H.

For a given problem, we wish to select best hypothesis (machine) h € H.

- In Bayesian learning, the best hypothesis is the most probable hypothesis, given
the data D and initial knowledge about the prior probabilities of the various

hypotheses in H.

- We can use Bayes theorem to determine the probability of a hypothesis based on
its prior probability, the observed data and the probabilities of observing various

data given the hypothesis.
< LUMS
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Bayesian Learning Framework

Maximum a Posterior (MAP) Hypothesis or Estimation:

e Find A that maximizes the distribution P(h | D).

Using Bayes theorem, we can write this as
P

~ P(D|h)P(h
) 2\pmr

Posterior

- Likelihood function

e The prior probability P(h) is the probability that the hypothesis holds
before looking at the training data. It refelcts our prior knowledge about
candidate hypothesis h.

e P(D) is the probability of the training data given no information about
hypothesis, that is, independent of h.

e P(D | h), likelihood function, quantifies the probability of observing D
given hypothesis h.

e P(h | D), posterior probability, quantifies the influence of data on our
prior probability or our confidence that h holds after observing the data.
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Bayesian Learning Framework

Maximum a Posterior (MAP) Hypothesis or Estimation:

e Find A that maximizes the distribution P(h | D).

e Maximizing posterior probability yields

D|h)P(h
hvAp = ma;z%%llze P(h| D) = mai%%uze P( IL(D)) (h) hyiap = maim??lze P(D | h)P(h)

Interpretation:

- We begin with prior distribution of hypothesis.
- Using candidate hypothesis, we determine probability data given hypothesis.

- Using these two, we update posterior probability distribution.
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Bayesian Learning Framework

Maximum Likelihood (ML) Hypothesis or Estimation:

e If each hypthesis h € H is equally probable, we can reformulate MAP
hypothesis as by maximizing the probability of data given hypothesis.
This is termed as maximum likelihood hypothesis given by

hyviap = maiiei%lize P(D|h)P(h) ey hyi = ma}i{ér?{[lize P(D | h) Maximizing Likelihood function

Example:
- Predict the face side (head, H or tail, T) of the loaded coin.

- If x is our event, we want to learn P(x=H) or P(x=T)=1- P(x=H).
- Data-set: outcomes of n events. (x,=H, X,=T, xz=H, x,=H,....)

- Intuitive prediction: count the number of heads and divide it by n. If this
quantity is greater than 0.5, head is more probable.

- Let’s apply ML estimation to this problem.
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Bayesian Learning Framework
Maximum Likelihood (ML) Hypothesis or Estimation:

Example:
e We want to estimate P(x = H) =1 — P(xz = T) and therefore hypothesis

space can be parameteterized by a single variable 6 such that P(x = H) =
0, that is, P(D | h) = P(D | 0).

e Assuming independence between events, we have P(D | h) H p(x; | 0)

e We use log of the likelihood function due to notational convenience and
since the product of probabilities can be very small:

log P(D | h) = long (x; | 0) = Zlogp(x”ﬁ)

e ML estimate is given by

hiyir, = maximize P(D | h) = 0y, = maximize > logp(a; | 0)
1=1

~0 LUMS T he maximum likelihood estimation maximizes the log-likelihood.
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Bayesian Learning Framework
Maximum Likelihood (ML) Hypothesis or Estimation:

Example:

e We can solve this analytically.

e If number of heads in the data is ngy.
Oy, = maxigmize (nH logd + (n — ng)log(l — 9))

e Derivative with respect to 6 yields
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Linear Regression as ML Estimation

Regression:
Process or f (X) .
X . System @_’ Yy Yy = f(X) T n

Input Noise I Observed

Output

» X
e Assume noise is i.i.d. Gaussian distributed: n ~ N(0,0?).
e y; = f(xi) + n; is also Gaussian distributed: y; ~ N(f(x;),0?).
Linear Regression:
Flx)= wlx (Assuming bias term is included in the formulation)

e Hypothesis class H: hypothesis functions of the form f(x) = w’x.

e Problem is to find w given data D. D= {(x1,y1), (X2,92)s- - Xn,yn)} C XL x Y
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Linear Regression as ML Estimation

Maximum Likelihood (ML) Hypothesis or Estimation:

e We can define likelihood estimate as

vt = maicir?ﬂlize P(D | h) =  wpyL = maximize P(D | f(x))
c w

e Noting y; ~ N(f(xi),0?).

. 1
WML = IMaximnize H

w T o\ 2T
=1

(y: — f(xi)) )

exp (— 5o

e Maximizes the log (natural, In) of the function instead.

1

n

2 ))? - 1 i — i
WL, — maximize log (H _ e (- (v, Qigxm )): waximize 3 log ( _ exp (- (y 2£(;<
w o\ 2T w — </

1=1 o

— maximize 2"’: — log(g\/%) + log (exp (_ (yi — f(x1))? )> iz Zn: (_ (yi — f(x1))?

w — 202 w 207
1=

=1
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Linear Regression as ML Estimation
Maximum Likelihood (ML) Hypothesis or Estimation:
—~ (yi— f(xz-))2)

W[, = maximize E (—
w 202
i=1

n

= minimize Z (yz — f (xi))2 We have seen this before! Squared-error.

w
1=1

e For linear regression case: f(x) = wlx
n

W, = minimize Z (yi — wai)2 We have an analytical solution.
W
i=1
e We can compute variance as: 1
5% = n Z(Z‘Jz — Wi x)
Notes: i=1

- Maximizing ML estimate is equivalent to minimizing least-squared ervor.

- ML Solution is same as least-squared ervor solution.

- This is a probabilistic interpretation or Bayesian explanation of the least-squared ervor
olutiom and why did we choose squared ervor for defining a loss function.
LUMS
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Naive Bayes Classifier

Example:

- Given Outlook, Temperature, Humidity
and Wind Information, we want to
carry out prediction for Play: Yes or No.

e Mathematically, which one is greater
P(Play = Yes | Outlook, Temp., Humidity, Wind)
P(Play = No | Outlook, Temp., Humidity, Wind)

e Predict for Sunny outlook, High humidity,
Cool temperatue and Weak wind.

e Predict the most likely.

LUMS
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Day |[Outlook [Temp. Humidity (Wind Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 |Overcast [Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 [Rain Cool Normal |Weak Yes
D6 |[Rain Cool Normal [Strong No
D7 |Overcast |Cool Normal |Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal |Weak Yes
D10 [Rain Mild Normal |Weak Yes
D11 Sunny Mild Normal [Strong Yes
D12 |Overcast Mild High Strong Yes
D13 |Overcast [Hot Normal |Weak Yes
D14 [Rain Mild High Strong No




Naive Bayes Classifier

Example:

P(Play = Yes | Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Weak)

~ P(Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong | Play = Yes) P(Play = Yes)
N P(Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong)

Naive Assumption:

e Feature are mutually independent given the label!

P(Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong | Play = Yes)

= P(Outlook = Sunny | Play = Yes) P(Temp = Cool | Play = Yes) P(Humidity = High | Play = Yes) P(Wind = Strong | Play = Yes)
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Example: ,
P(Outlook = Sunny | Play = Yes) = 5
P(Temp = Cool | Play = Yes) = g
P(Humidity = High | Play = Yes) = g
3
P(Wind = Strong | Play = Yes) = 5
9
(Play = Yes) = 7
3
P(Outlook = Sunny | Play = No) = —
1
P(Temp = Cool | Play = No) = =
4
P(Humidity = High | Play = No) = =
P(Wind = Strong | Play = No) = g
5)
(Play = Noj) = 37
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Naive Bayes Classifier

Day |Outlook [Temp. Humidity Wind Play
D1 |Sunny Hot High Weak No
D2 [Sunny Hot High Strong No
D3 |Overcast Hot High Weak Yes
D4 [Rain Mild High Weak Yes
D5 |Rain Cool Normal  |Weak Yes
D6 |Rain Cool Normal [Strong No
D7 |Overcast |[Cool Normal [Strong Yes
D8 [Sunny Mild High Weak No
D9 [Sunny Cool Normal |Weak Yes
D10 |Rain Mild Normal  |Weak Yes
D11 [Sunny Mild Normal [Strong Yes
D12 |Overcast [Mild High Strong Yes
D13 |Overcast [Hot Normal  |Weak Yes
D14 |Rain Mild High Strong No




Naive Bayes Classifier
Example:

P(Outlook = Sunny | Play = Yes) P(Temp = Cool | Play = Yes) P(Humidity = High | Play = Yes) P(Wind = Strong | Play = Yes)

x P(Play = Yes) -

Nol il )
X
| w
X
O W
X
O w

9
<= =0.0053

P(Outlook = Sunny | Play = No) P(Temp = Cool | Play = No) P(Humidity = High | Play = No) P(Wind = Strong | Play = No)

3 1 4 3 5
x P(Play = No Y AV AV R

(Play ) =X =X XX o 0.0206
P(Play = Yes | Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong) = 0.0053 = 0.2046

Y= — DU, HEmD = 00 Y= e — MO T 00053+ 0.0206
P(Play = No | Outlook = Sunny, Temp = Cool, Humidity = High, Wind = Strong) = 00206 0.7954

y = = Sunny, Temp = Cool, y = High, E 8) =3 oo206 = "

Play = No is more likely!
LUMS
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Naive Bayes Classifier

Generative Classifier:

- Attempts to model class, that is, build a generative statistical model that
informs us how a given class would generate input data.

- ldeally, we want to learn the joint distribution of the input x and output label y,
that s, P(x.y).

- For a test-point, generative classifiers predict which class would have most-likely
generated the given observation.

- Mathematically, prediction for input x is carried out by computing the
conditional probability P(g|x) and selecting the most-likely label y.

- Using the Bayes rule, we can compute P(glx) by computing P(y) and P(x|g).

e Estimating P(y) and P(x|y) is called generative learning.

LUMS
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Naive Bayes Classifier

Overview of Naive Bayes Classifier:

e We have D = {(Xlayl)a (X21y2)9 SR (Xnayn)} C X4 x Y
Y={1,2,..., M} (M-class classification)

Key Idea:

e Estimate P(y|x) from the data using the Bayes Theorem.

e Using Bayes theorem and MAP learning framework, we can write this as

- . Px]y) Py) -
MAP (X) maximize (y | x) maximize P(x) maximize (x| y) P(y)

e Estimating P(y) is easy. If y takes on discrete binary values, coin tossing
or spam vs non-spam for example, we simply need to count how many
times we observe each class outcome.

e Estimating P(x|y), however, is not easy, Why?

LUMS
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Naive Bayes Classifier

Overview of Naive Bayes Classifier:

Example:

e M = 2 and features d = 6. Assuming binary features/classification.

e We want to estimate
Plx | 5) = PV, 2 2 2 50) 2 Oy)

e How many parameters do we need to fully
estimate P(x|y)?

e We need to represent all 2° outcomes or
probabilities for each y = 0, 1.

e For d binary features, we need to
represent all 2¢ outcomes.

time

19:50:00
19:55:00
20:00:00
20:05:00
20:10:00
20:15:00
20:20:00
20:25:00
20:30:00
20:35:00
20:40:00
20:45:00

Inputvl

e Learning the values for the full conditional probability

would require enormous amounts of data.
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Naive Bayes Classifier

Naive Bayes Classifier:
e To overcome this requirement of enormous data for the computation of

conditional probability, we can make a ‘naive Bayes’ assumption.

Naive Assumption:

e Features are mutually independent given the label! e How many probabilities now?
d . one for each feature/label.
e Consequence: P(x|y)=Px®,z® ... @y = H Pz | y) 2d
i=1
Interpretation®:
Original data Estimation of first dimension Resulting data distribution 9
‘ "= (W [y =2) ‘
=1 a ¥ P(z® |y =1) éP(x(Q) |y =2)
IS5 5
----;---. ------------------------- e e > @----E--Q---»
e o (M |y =1)

HP @1y =1)

1. Source: https://www.cs.cornell. edu/courses/cs4780/20185p/lectures/IecturenoteOS html
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Naive Bayes Classifier

Naive Bayes Classifier:

e We can reformulate our hypothesis function, referred to as Naive Bayes
(NB) Classifier, as

NB(x) = maximize P(y|x) = maximize H (= | y) P(y)

e Maximizes the log (natural, In) of the function instead.

hng(x) = maximize Zlog( (9 | y) P(y ))

yey
e How many probabilities?

ma;%rjxjuze ; og P(z'" | y) + log P(y)

LUMS
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Naive Bayes Classifier

Naive Bayes Classifier - Training:

Assume each feature and label as a binary variable

e Hypothesis space: 2d + 1 different binomial distributions.
e P(zW |y)and P(y) for each (V) and each y = {0,1}, i =1,2,...,d.

e Each probability can be parameteterized by a single variable 6.

e We treat learning of each of these as a separate MLE problem.

count(z(" = j and y = k)

PaV=ily=h=——"r—p — Skeloy
count(y = k) count(y = k)
Ply=k) = = k 1
(y="%) count(y = 0) + count(y = 1) n ’ 10,1}

e We compute these probabilities during training stage.

e As we saw earlier, these probability estimates maximizes the likelihood.

LUMS
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Naive Bayes Classifier

Naive Bayes Classifier - Prediction:

Assume each feature and label as a binary variable
e For a new test-point X,.w, We assign the label as

d
ANB (Xpew ) = maximize P Xpew ) = Maximize Pz P
NB(Xnew) = maximize  P(y | Xyew) = maximiz 1;[1 (x| 9) P(y)

We have a problem here!
e We have a product of probabilities. If any of the estimated probability is
zero, the product would be zero.

Solution: Additive Smoothing or Laplace Smoothing
count(z() = j and y = k) + ¢
count(y = k) + (R
count(y = k) + ¢

n+ (M ’

e Here / > 0. If / =1, we refer to it as add-1 smoothing.
LUMS e R is the number of values (¥ can take. For binary case, R = 2.
ANot-for-Profit University e M is the number of classes. For binary case M = 2.

, J,ke{0,1}

P =j|ly=k) =




Naive Bayes Classifier

Naive Bayes Classifier - Extensions:

e We have D = {(Xla yl)a (XZa y2)9 SR (Xnayn)} C X4 x Y
Y={1,2,..., M} (M-class classification)
e We assume that each feature z(¥) takes L; values, that is, z(*) € {1,2,...,L;}.

How many probability tables do we have if we have d features and M labels?

e dM + 1: we have one probability table for each feature and each value of
the label and one more table for the prior P(y).

e The set of tables for a single feature (for all labels y) is referred to as a
conditional probability table (CPT), and here we have d of those.

Incorporating model parameters in the formulation

e We considered a binary case and assumed that a single parameter charac-
terizes probability model associated with each feature.

e In general, we can have parameters defining the probability model and we

learn parameters of the probability model during the learning stage.
LUMS
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Naive Bayes Classifier

Naive Bayes Classifier — Extensions:

Gaussian Naive Bayes — Continuous Features:

In practice, some features are discrete (e.g., gender, marital status) and
some are continuous (weight).

The probability model or distribution for each z(* can be parameterized
differently.

If () € R, what kind of distribution can we use for P(z(9)|y)?

For real-valued features, we often use a Gaussian distribution to model
probability density function, that is,

1

p(z |y =k) =
o\ 2T

202

For succinct representation, the depenence of 1 and o on feature index
¢ and label index k is dropped. We can have different distributions or
parameters for each ¢ and each k. just like we have different probabilities
for discrete features.
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Naive Bayes Classifier

Naive Bayes Classifier — Extensions:

Gaussian Naive Bayes — Training:

e We have p(z( | y = k) ~ N(u,0?), given data we want to learn p and o
for each 7 and each k.

e Given ¢ and k, we compute the p and o as sample mean and sample
variance, where the sample corresponds to z(*) for which associated label

y = k.
= d(y
a count(y = Z

1 - i
o* = Doy = k) (25" — )

count(y = k)

=1

e For each label y, we need to estimate d means and d variances during
training.
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Naive Bayes Classifier

Naive Bayes Classifier - Summary:

- In Naive Bayes, we compute the probabilities or parameters of the distribution defining
probabilities and use these to carvy out predictions.

- Naive Bayes can handle missing values by ignoring the sample during probability computation,
is robust to outliers and irrelevant features.

- Naive Bayes algorithm is very easy to implement for applications involving textual
information data (e.g., sentiment analysis, news article classification, spam filtering).

- Convergence (s quicker relative to logistic regression (to be studied later) that discriminative
in nature.

- It performs well even when the independence between features assumption does not hold.
- The resulting decision boundaries can be non-linear and/or piecewise.

- Disadvantage: It is not robust to redundant features. If the features have a strong relationship
or correlation with each other, Naive Bayes is not a good choice. Naive Bayes has high bais
and low variance and there are no reqularization here to adjust the bias thing
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NB Classifier — Text Classification

Text Classification Overview:

- Applications of text classification include
- Sentiment analysis
- Spam detection
- Language ldentification; to name a few.

Classification Problem:

Input: a document and a fixed set of classes (e.g., spam, non-spam)

Output: a predicted class for the document

Classification Methods:
~ Hand-coded rules: Rules based on combinations of words or other features

- e.g., spam: black-list-address OR (“dollars” AND “you have been selected)
- Accuracy can be high if rules carefully refined by expert

- But building and maintaining these rules is expensive

LUMS Ref: “Speech and Language Processing” by Daniel Jurafsky & James H. Martin

A Not-for-Profit University Source: https://web.stanford.edu/~jurafsky/slp3/




NB Classifier — Text Classification

Text Classification — Supervised Learning:

Input: a document and a fixed set of classes (e.g., spam, non-spam)
+ training data (n labeled documents)

Output: a predicted class for the document

Bag of Words — Representation of a document for classification:
Assumption: Position doesn’t matter

| love this movie! It's sweet, it 6
but with satirical humor. The fairy it I 5
dial : t and th Y always loveig the 4
ialogue is great and the it whimsical it | 0 3
adventure scenes are fun... and geen are
o friend , anyone and 3
It manages to be whimsical MKappy dialogue <eon >
and romantic while laughing adventure reCO"][_”!e”Id vet ]
at the conventions of the whos"l"eet i rﬁg\;{éca it would 1
fairy tale genre. | would it !putto romantic | whimsical 1
recommend it to just about Se"eraggain Sult the humor - times 1
anyone. I've seen it several the “geen would sweet 1
times, and I'm always happy to scenes | {he manage satirical 1
) : i the 4imes adventure 1
to see it again whenever | I and and
. . out hil genre 1
have a friend who hasn't whenever g IO
seen it yet! . r(]:onventions

Ref: “Speech and Language Processing” by Daniel Jurafsky & James H. Martin

A Not-for-Profit University Source: https://web.stanford.edu/~jurafsky/slp3/




NB Classifier — Text Classification

Text Classification — Terminology and Preprocessing :
- Corpus: A collection of documents; data.

- Vocabulary, denoted by V, is the union of all the word types in all classes (not just one class).

Preprocessing documents:

- Clean the corpus: (e.g., Hello, hello or hello! should be considered the same)
- Remove numbers, punctuation and excessive white spaces
- Use lowercase representation

- Stop words concept: very frequent words (a or the)
- Sort vocabulary with respect to frequency, call the top 5 or 20 words the stopword list
and remove from all of the documents or from the vocabulary.

- In naive Bayes, it’'s more common to not remove stop words and use all the words.

- After pre-processing, create a mega document for each class by concatenating all the
documents of the class.

- Use bag of words on mega document to obtain a frequency table for each class.

LUMS Ref: “Speech and Language Processing” by Daniel Jurafsky & James H. Martin

A Not-for-Profit University Source: https://web.stanford.edu/~jurafsky/slp3/
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NB Classifier — Spam Filtering

Example: Spam vs Non-Spam:

Issue 1:
[Category | Document I o is not in the training data.

Spam send us your password

, - unknown word or out of vocabulary word.
Spam review us
Spam send us your account Solution:

remove out of vocabulary word from the test document.
Spam send your password
Non-spam  password review
\ g , [ssue 2.:
on-spam - Send us your review ‘account’ is only available in one class

? review us now

: Solution:
? review account

Use add-1 smoothing. We will see this shortly.

- Vocabulary, V = {send, us, your, password, review, account}

LUMS
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NB Classifier — Spam Filtering

Naive Bayes (NB) Classification:
e NB C(lassifier:

d
h _ .. p _ — Pz p
Ng(x) = maximize  P(y | x) = maximize 1;[1 (2 1y) P(y)

e x represents the test document for which we want to carry out prediction.
Each feature represents a word in the document.

e d here represents the number of words in the test document.
e For x =“review us now”’, d = 3.

e For x =“review account”, d = 2.

LUMS Ref: “Speech and Language Processing” by Daniel Jurafsky & James H. Martin

A Not-for-Profit University Source: https://web.stanford.edu/~jurafsky/slp3/
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NB Classifier — Spam Filtering

Naive Bayes (NB) Classification — Example:

Spam send us your password ---

Spam review us send 3 1
Spam send us your account HE 3 1
Spam send your password Bag of Words your 3 1
Non-spam  password review password 2 1
Non-spam  send us your review review 1 2
? review us now account 1 0
? review account 13 6

e For x =“review us now”, d = 3.

We compute P(Spam | x) and P(Non — spam | x)

LUMS
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NB Classifier — Spam Filtering

Naive Bayes (NB) Classification — Example:

e For x =“review us now” .

e Ignore ‘now’: unknown word, out of vocabulary

e We compute P(x | Spam) P(Spam) and P(x | Non — spam) P(Non — spam)

P(x | Spam) P(Spam) = P(review | Spam)P(us | Spam) P(Spam) ---

1 3 1

P(review | Spam) = B P(us | Spam) = s P(Spam) = G send 3 1
us 3 1
P(x | Spam) P(Spam) = 0.012 your 3 1
9 1 9 password 2 1

P(review | Non — spam) = — P(us | Non — spam) = = P(Non — spam) = — _
6 6 6 review 1 2
account 1 0
P(x | Non — spam) P(Non — spam) = 0.0185 - =

Document is likely a non-spam.
LUMS
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NB Classifier — Spam Filtering

Naive Bayes (NB) Classification — Example:

e For x =“review account”.

e For ‘account’: non-spam count is zero. Consequently, P(account | Non — spam) = 0.
Solution: Add 1 smoothing

4 2
1+1 2 1+1 2
[T _ _ p ¢ _ — - send 3 1
(review | Spam) 356 19 (account | Spam) 556 19
We have added numerator factor times the size of the us . 1
vocabulary in the denominator. your 3 1
, 24+1 3 0+1 1 g 5 1
P Non — — = _ _JrT+_ ~  passwor
(review | Non — spam) 616 12 P(account | Non — spam) 616 12 |
review 1 2
P(X | Spam) P(Spam) = 0.00738 account 1 0
P(x | Non — spam) P(Non — spam) = 0.00694 13 6

LUMS Document is likely a spam.

A Not-for-Profit University
e



Outline

- Bayesian Learning Framework

- MAP Estimation

- ML Estimation
- Linear Regression as Maximum Likelihood Estimation
- Naive Bayes Classifier

- Introduction to Bayesian Network
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Bayesian Networks Introduction

Overview:
e Using Bayes theorem, we developed the following classifier:
L .. Plx|y) P(y) i
MAP (X) ma;cg)r}uze (y | x) ma;cg)r}nze Px) ma;(érar}nze (x| y) P(y)

e Estimation/computation of P(x | y) requires enormous amounts of data.

- We simplified using naive Bayes assumption: features are independent.
(Too simple to hold!)

- Bayesian network - a graphical model for representing probabilistic relationships
among inputs, labels.

- Generalizes the idea of naive Bayes to model distributions over groups of variables
with more complex conditional independence relationships.

- ldea: A Bayesian network consists of a collection of conditional probability

distributions such that their product is a full joint distribution over all the variables.
LUMS
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Bayesian Networks Introduction

Overview — Example: Bayesian Network for Liver Disorder Diagnosis :

Upper

abdominal Serum amylase
pain

History of Palpable
surgery gallbladder
the RUQ History of
alcohol abuse m
Choledochalithotomy @ Hepatotoxic h 4

Fat intolerance

Hypetlipidemia

Diabetes

History of
Blood hospitalization
transfusion

Presence of
antibodies to
HBsAg in blood

Abnomal
carbohydrate

: ; metabolism
Liver disorder
_ Alcohol
intolerance
@ Enlarged
spleen
Hepatic
encephalopat]

" Alpha Impaired
resistances fetoprotein

History of viral
hepatitis

Presence of
antibodies to
HDY in blood

Presence of

resence of

hepatitis B antibodies
surfgce antigen Presence to HBcAg in
in blood

of hepatitis
B antigen
in blood

Itching in
pregnancy

CONsClousness

Intemational
normalized ratio
\oipethann e
fregnancy, Antimitochondrial

antibodies

Imequla

3 usculo-skeletal Totel proteins
pain

= Platelet
Jaundice count liver edge
symptoms

Smooth muscle

antibodies 3
Antinuclear Gania ;
Ly globulin
antibodies Edoma @
Beta globulin )

Alphal Weight
— Alpha2 globulin gain
globulin

swelling

4 LUMS O
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Bayesian Networks Introduction

Introduction:

Bayesian Network: Directed Acyclic Graph (DAG) + Conditional Probability Tables or
Distributions (CPT or CPD)

Bayesian networks can be visualized by drawing a graph where each variable is a node, and
a divected arc (edge).

We represent variables in the form of nodes.

These nodes can be labels or features: we do not make any distinction between features and
[abels during training as they are all treated the same way.

Edges or arcs represent the relationship or dependence between the variables.
Nodes and edges represent the conditional independence relationships between the variables.
We may also represent causality in the Bayesian network.

- Causality means the effect of one variable on the other.
- Incorporating causality can help us defining a structured graph.

o LUMS
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Example:

- Bayesian Network: DAG + CPT

- Node: represents a random variable

- Directed Edge

- B is a parent of C and D

Bayesian Networks Introduction

—~ Direction indicates the causation

- Assuming each variable is Bernoulli RV.

0 0.6
1 0.4

LUMS
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- = O O

0.01
0.99
0.7
0.3

0
0
1
1

_) O

0.6
0.9
0.1

CPT for each node:

Each node has a conditional
probability table that
quantifies the relationship
with the parent node.

0 0.02
0 1 0.99
1 0 0.05
1 1 0.95



Bayesian Networks Introduction

Example:

- For this network, we want to compute the following joint distribution:
P(A=1,B=1,0=1,D=1) =P(A=1)xP(B=1,C=1,D=1|A=1)

Exploiting independence between C and D,
and conditional independence between C (or D) and A

=PA=1)xPB=1|A=1)xPC=1|B=1)xPD=1|B=1)
=04x03x0.1x095=0.0114

0 06 0 0.01 0 0 0.02

1 04 0 1 0.99 0 1 06 0 1 0.99

1 0 07 1 0 09 1 0 005

LUMS 1 1 0.3 1 1 0.1 1 1 095
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Bayesian Networks Introduction

Formulation:

e For variables X1, X, ..., X4, exploiting network structure, we can write

P(X1, Xo,...,Xq) = HP(Xi|parentS(Xi))

e Using Bayesian network, we have a structured and compact representation

of the joint distribution.

Independences:

e Marginal independence:

P(A, B,C) = P(A)P(B)P(C)

LUMS

A Not-for-Profit University

e Conditionally independent effects

P(A, B,C) = P(B|A)P(C|A)P(A)

e Independent causes

P(A,B,C) = P(A|B,C)P(B)P(C)



Bayesian Networks Introduction

Naive Bayes Network (Classifier):

o If 21 22 . 24 represent the features and y is a label of the class.

o LUMS
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Bayesian Networks Introduction

Prediction or Inference using Bayesian Network:
- We compute posterior probabilities given some evidence.

e Mathematically, we want to compute P(Y|X), where X represent the
evidence (e.g., features) and Y is the query variable (e.g., label).

- In general, exact inference is intractable (NP hard).

- There are assumptions (e.g., simplest: Naive Bayes) and approximate methods
(e.g., Monte Carlo) which can be used to carry out inference efficiently.

Learning of Bayesian Network:

- Structure (nodes + edges) is given, we learn conditional probabilities using the training data.

~- If structure is not given, we use domain knowledge along with the training data to learn the
both the structure and conditional probabilities using the data.

LUMS
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Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk
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