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Classification

Recap:

e We assume we have training data D given by

D = {(Xlayl)a (X27y2)7 SR (Xn:yn)} C Xd X )

Binary or Binomial Classification:

e V={0,1Yor Y ={-1,1}

Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.

Multi-class (Multinomial) Classification:

e V={1,2,..., M} (M-class classification)

Emotion Detection.

Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.
Speaker Identification from Speech Signal.

Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

Take an image of the sky and determine the pollution level (healthy, moderate, hazard).
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Logistic Regression

Overview:
- kNN: Instance based Classifier

- Naive Bayes: Generative Classifier

- Indirectly compute P(y|x) as P(x|y) P(y) from the data using Bayes rule

Logistic Regression: Discriminative Classifier
- Estimate P(y|x) divectly from the data

- ‘Logistic regression’ is an algorithm to carry out classification.
- Name is misleading; the word ‘regression’ is due to the fact that the method attempts
to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.
e Mathematically, model is characterized by variables 6.
he(x) = P(y|x) Posterior probability
- A simple form of a neural network.
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

1 0o
) 61 > , Jhe (x) >0  class 1
he(x) <0 class 0
z(2) 02 ho(x) = 6y + 6'x
R? — R
Real-valued output here!

V
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).
- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic/Sigmoid function

1 0 _ 1
0 U(Z) T 14e—=
z(1) 01
3 > o) — ——
14+e— e ()
z(2) 02 ho(x) = 0y + 6'x
R?—> R
Real-valued output here!
We want probability; Activation function

LUMS between O and 1!
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Logistic Regression
Logistic (Sigmoid) Function

1
o(z) =
1+4+e~ .
e Interpretation: maps (—oo,00) to (0,1) ()
e Squishes values in (—o0,0) to (0,1)
e It is differentiable. 0.5
e Generalized logistic function:
L
U(Z) - 1+ e—k(z—20) I | -
6 -4 -2 0

e Sigmoid: because of S shaped curve
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Logistic Regression
Change in notation:

- Treat bias term as an input feature for notational convenience.

! 0,

(1) 61 )
2. > o) — ho(x)=0(0"x)
_ 1
58(2) 92 QTX — 1+e_9Tx
RY - R

e 0,
~ ~—

* 6

R Linear function.
LUMS Linear Regression.
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Logistic Regression
Classification:

1 —— 6o

eD)

6

3;(2) 92 BTX T 1+e—9Tx

(@)

04

e hg(x) = P(y = 1|x) represents the probability of class membership.
e Assign class by applying threshold as

j= {Class 1 o(0"x) > 0.5

Class 0 otherwise

e 0.5 is the threshold defining decision boundary.

e We can also use values other than 0.5 as threshold.
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Logistic Regression

One more interpretation:

Ply=1x) = ho(X) = — Py = 0lx) = 1 — hg(x) = —°—

B 1+ 6_9Tx B 1+ 6—9Tx
e The odds in favor of an event with probability p is p/(1-p).

e Define odds of class 1. Py = 1]x) — 1

Py =0]x) e 0'x

e Taking log of odds of class 1.

P(y = 1|X) 1 —o7 T
—] — ] X _ g
P(y — 0|X) og g oge X

log

e Interpretation:
logistic regression considers log odds as a linear function of x
logistic regression — a linear classifier of log of odds.
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Logistic Regression
Example:

- Disease prediction: Diagnose cancer given size of the tumor.

e Tumor size, x
e Binary output, y = 0 if tumor is benign and y = 1 for malignant tumor.

e Linear regression model attempt

ho(z) = 01x = 6y + 6,2 e output is real-valued (—oo, 00)
e Logistic regression model

he(z) = o(by + 01x) = 1

14+e—(8o+017)

sigmoid squishes values from (—o0,00) to (0, 1)

o If hg(x) = 0.65 for any tumor size x, class label? malignant, because hg(x) = P(y = 1|x)
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Logistic Regression

Decision Boundary:

1
(v = 11%) = ho(x) = 0(67x) = ————r

. JClass 1 o(07x) > 0.5
v = Class 0 otherwise

i {Class 1 0'x >0

Class 0 otherwise

e All x for which 87x > 0 classified as Class 1. |

o (6" %)

e What does 87 x > 0 represent?
e It represents a half-space in d-dimensional space.

e 01x =0 represents a hyperplane in d-dimensional space.
Need a brief explanation!
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Logistic Regression
Hyper-Plane:

e 01x =0 represent a hyperplane in d-dimensional space.

e d=1 |
QTX:90-|—9133(1) =3 I .

(1)

BTX = 90 + 912’3(1) + 9233(2) =0

61 and f5 defines a normal to the hyper-plane.

e Hyper-plane 0”7 x = 0 divides the space into two half-spaces.

e Half-space 87x > 0 e Half-space 87x < 0

LUMS
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Logistic Regression

Decision Boundary - Example:

v = Class 0 otherwise

A {Class 1 0'x >0

e Predict admission given exam 1 and exam 2 scores (d = 2)
e All x for which 8%x > 0 classified as Class 1.

e 01x =0y + 0,21 + 0,22 =0

e Given after learning from the data.

0y = —92 61 = 92/95 0 =1

e Sigmoid returns close to 1 or 0
for points farther from the boundary.

LUMS

Admission Data m admitted
# notadmitted

Exam 2 Score

60 70 80 90 100

Exam 1 Score LU(l)
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Logistic Regression
Non-linear Decision Boundary:

e Can we have non-linear decision boundaries in logistic regression?

e We first understand the origin of the linear decision boundary.

e 07x = 0 represents a linear combination of the features.

e Connect with the concept of polynomial regression.

e Replace linear with polynomial; consider the following model, for example,
for d = 2,

Linear boundary: hg(x) = o(0y + 0120 + 92»’13(2))

Non-linear boundary: hg(x) = a<90—|—91x(1)+92x(2)+93 (gg(l))2_|_94 ($(2))2)
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Logistic Regression
Non-linear Decision Boundary:

Non-linear boundary: hg(x) =0 (90—{—913:(1)4—9255(2)4-93 (x(l))2_|_94 ($(2))2)

e Given after learning from the data.

2
2
ho(x) = a( Sl (M) 4 (x(z)f)
0
Boundary: (+(0)? + (+2)? = 2.2 .
(Circle of radius 1.5) .
-6 -4 7
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Logistic Regression

Model Training (Learning of Parameters):
e We assume we have training data D given by

D = {(x1,11), (X2,42), > (Xn,yn)} € X x Y

e )= {07 1}
Logistic regression model:
. T \ _ 1
hQ(X) T 0-(9 X) o 1+€—9Tx
0 = [0y,01,...,04] 0 represents d + 1 parameters of the model.

- Objective: Given the training data, that is n training samples, we want to find the

parameters of the model.
- We first formulate the loss (cost, objective) function that we want to optimize.

- We will employ gradient descent to solve the optimization problem.
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Logistic Regression
Loss/Cost Function:

- Candidate 1: Squared-ervor, the one we used in regression.

mn

3

£6) = 53 (ha(xi) )" = 5 3 (o(6™x:) ~ )
1 & 1 ;
E(B) — 5 Zl (1 n e—QTxi o yz)

- We wish to have a loss function that is differentiable and convex.

- The squared-ervor is not a convex function due to sigmoid operation.

- Due to non-convexity, we cannot numerically solve to find the global minima.

- Furthermore, the hypothesis function is estimating probability and we do not use

difference operation to determine the distance between the two probability distributions.

LUMS
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Logistic Regression
Loss/Cost Function:

- Candidate 2: Cross entropy loss or Log loss function is used when classifier
output is in terms of probability.
- ldea: Cross-entropy loss increases when the predicted probability diverges
from the actual label.
- If the actual class is 1 and the model predicts O, we should highly penalize

it and vice-versa.

AN

- Loss/cost function for single training example:

) —log(he(x:)) y=1
COSt(hB(Xi)ayi) — {_ log(1 — hg(x;)) y=20

Tyg=1 iTy=0

For y; = 1,
e cost=0 when hg(x;) =1 e cost=00 when hg(x;) =0

- Mismatch is penalized: larger mistakes get larger penalties

o LUMS
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Logistic Regression
Loss/Cost Function:

- We can also express the loss/cost for one training sample as

) —log(he(x;)) y=1
COSt(hG(Xi)ayi) — {_ log(l . he(Xz‘)) y=20

cost(ho(x;),yi) = —yilog(he(xi)) — (1 — y;) log(1 — he(x;))
- Using this formulation, we define the loss function:
L(O) =— Zn:y@ log(he(x;)) + (1 — y;)log(1l — he(x;))
=
- Since cost for each sample penalizes mismatch, this loss function prefers the corrvect class

[abel to be more likely.

- Finding parameters that minimizes loss function or maximizes negative of the loss function

is, in fact, maximum likelihood estimation (MLE). How?

o LUMS
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Logistic Regression
Loss/Cost Function:

- We can also reformulate the loss/cost for one training sample as

COSt(he(Xz'), yz) = —y;log(he(x;)) — (1 — y;) log(1 — he(x;))

COSt(hg(Xi),yi) = —log (he(xz'))yi (1— he(Xi))(l_yi))

Inside the log; we have a
e likelihood function since hg(x;) gives us probability of y; = 1.

e probability mass function, (p¥)(1 — p)' =¥, of Bernoulli random variable.
e Cost is the negative log-likelihood function, also referred to as cross-entropy loss.
e Minimizing cost; equivalent to maximization of log-likelihood or likelihood.

e Therefore, 8 that minimizes £(@), maximizes likelihood.

LUMS
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Logistic Regression
Model Training (Learning of Parameters):

- We have following optimization problem in hand:

miniemize L(O) =— ; y; log(he(xi)) + (1 — i) log(1 — he(x;))

- We do not attempt to find analytical solution.
- We can use properties of convex functions, composition rules and concavity of log to
show that the loss function is a convex function.

- We use gradient descent to numerically solve the optimization problem.

o LUMS
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Logistic Regression
Gradient Descent:

e For gradient descent, we defined the following update in each iteration:

oL
93(—93—@8—93, a >0

89 : Rate of change in the loss function with respect to 0;

e « is referred to as step size or learning rate.

e Idea: step size in the direction of negative of the derivative.

Algorithm (we have seen this before):
Overall:

e Start with some 8 € R? and keep updating to reduce the loss function
until we reach the minimum. Repeat until convergence

Pseudo-code:

e Initialize @ € R¥.

e Repeat until convergence:

8E
0; 0, —, foreach ¢=0,1,2,...,d 0« 0—aVL(0) Note: Simultaneous update.

@ L UMS "0,
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Logistic Regression

Gradient Descent Computation:

e How to compute %?
J

- Zy@ log(he(xi)) + (1 — ;) log(1 — he(x:))

e Derivative is linear; drop subscript 7 and compute for each training sample.

0 1 1 0
_ _ — (1 —
89 (y log(he(x)) + (1 —y)log(1 hg(X))) (y o (%) ( Y) 1_ he(X)) 26, (he(X))
1 e—GTx
e Noting he(x) = R — he(x) = g L
e We can write
0 6_9Tx 0 e_eTx 1 .
h — (0T - (7) — — ()
89 ( 9( )) (1 n e_ng)Z 893 (9 X) 14+e0"x 14 o— 07T x z hg(X)(l hQ(X)) )

o LUMS
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Logistic Regression
Gradient Descent Computation:

77 (v108(0) + (1 = 1) loe(1 ~ ha(x) )

o - — X J
:( 1 1 )aij(h"(x)) g, (ho()) = ha(x)(1 = ho(()) 2

oG~ T T T he

_ Y —he() = (L =9)ho(X) po(x)(1 = hg(x)) 20
hg(X)(l — hg(X))

— (y — hg(X))m(j) = —(he(X) — y) x(j)
Overall:
(9;;39) _ Z (;; (yl log(he(x;)) + (1 — y;) log(1 — hg(Xz)))

‘ LUMS
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Logistic Regression

Multi-Class (Multinomial) Classification:
e V=1{0,1,2,..., M — 1} (M-class classification)

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:

e Train M different binary logistic regression classifiers ho(x), hq(x), ..., har—1(x).

e Classifier h;(x) is trained to classify if x belongs to i-th class or not.
e For a new test point z, get scores for each classifier, that is, s; = h;(z).
e s, represents the probability that z belongs to class 1.

e Predict the label as y = max S;
i=0,1,2,.... M —1

LUMS
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Logistic Regression
Multi-Class (Multinomial) Classification:
e V=1{0,1,2,..., M — 1} (M-class classification)

Option 2: Build an all-vs-all classifier (commonly known as one-vs-one classifier):

e Train (]\2/[ ) = (M)(zﬂ different binary logistic regression classifiers h; ;(x).

o Classifier h; ;(x) is trained to classify if x belongs to i-th class or j-th
class.

e For a new test point z, get scores for each classifier, that is, s; ; = h; ;(2).

e s;; gives the probability of z being from class ¢ and not in class j.

Select label for which

e Predict the label 3 for which the sum of probabilities is maximum. . .
the sum is maximum

Example:
e Consider a problem with 3 classes, A, B and C. Pi(A) + P3(4)
Classifier 1 Y@y Classifier 2 Py(B) Classifier 3 W0z} Py (B) + P»(B)
AvsB Pl(B) BvsC P> (C) AvsC P3(C)
P (C) + P3(C

A Not-for-Profit University




Logistic Regression

Multi-Class (Multinomial) Logistic Regression:
- ldea: Extend logistic regression using softmax instead of logistic (sigmoid).

- We have following logistic regression model for binary classification case (M=2).

1 —— by

2

th

e

92 BTX e

e

04

e hg(x) = P(y = 1|x) represents the probability of membership of class 1.

e Model: weighted sum of features followed by sigmoid for squishing the
values of weighted sum between 0 and 1.

1 eGTx eBTx
— = = Ply=1|x) = Ply=1|x) =
Ply =11x) = ho(x) = T =1k =Fr 7 PU=1%="F5"7%
e—GTx [ eO
Ply = 0fx) = 1 = ho(x) = T——r Ply=0x) = = Py =0 = Gr—73
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

- For M classes, we extend the formulation of the logistic function.

- Again, note that the model gives us probability of class membership.
- We assign the label that is more likely.

e Noting this, we build a model for m-th class as

0,, % x

P(y = mlx) = ho,, (x) = ——
> o0 Tx 0,,,— model parameters
k=0

e Model: weighted sum of features followed by softmax function.

e Softmax - extension of logistic function:

(2) 1 e” o () 1 e*m
o(z) = = softmax(z,,) = =
l+e % e*+el " 14+ e 7 Mil »
€
Logistic function for 2 classes. =0

Softmax for M classes.
LUMS
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

0., x

P(y = m|x) = hg,, (x) = —

Mz—:l 6u Tx 6.,,— model parameters
e

k=0

- A critical assumption here: no ordinal relationship between the classes.
- Linear function for each of the m classes.
- The softmax function

- Input: a vector of M real numbers

- Output: M probabilities proportional to the exponentials of the input numbers.

e We have 0,,, = [0,,.0,0m1,--.,0m.q| for each class m = {0,1,...,M — 1}.

e In total, we have (d + 1) x M parameters.
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Logistic Regression

Multi-Class Logistic Regression — Graphical Representation of the Model:

input (features)
X

90TX Softmax
Q 9 > > P(y = 0|x) = he, (x)
T
@ o, —x, oOm " > P(y = 1|x) = he, (x)
T 0. Tx
O 0, —Prx, 2% > Ply=20x) = o, ()

; A
@ 9M—1M1X> > Py =

Yy
LUMS m=0,1,2,.... M—1
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression — Cost Function

e For binary classification, we have:

L£(8) =~ yilog(he(x;)) + (1 — i) log(1 — he(xi))

=1

e Extending the same for multi-class logistic regression:

n M-—1
>y ) log (he,, (x:))
1=1 m=0
n M-—1 Bmez
o(y ) log (Mi )
i=1 m=0 Z eOr” x;
k=0

o LUMS

A Not-for-Profit Univ




Logistic Regression

Summary:

- Employs regression followed by mapping to probability using logistic function
(binary case) or softmax function (multinomial case).

- Do not make any assumptions about distributions of classes in feature space.

- Decision boundaries separating classes are linear.

- It provides a natural probabilistic view of class predictions.

- Loss function is formulated using cross entropy loss.

- Can be trained quickly using gradient descent.

- Computationally efficient at classifying (needs inner product only)

- Model coefficients can be interpreted as indicators of importance of the features.
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Feedback: Questions or Comments?

Email: zubair.khalid@lums.edu.pk
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