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Supervised Learning
Classification Algorithms or Methods

Predicting a categorical output is called classification

Classification

Frequency Table

Covariance Matrix

Similarity Function

Others

Bayesian Methods

Decision Trees

Linear Dis. Analysis

Logistic Regression

K Nearest Neighbor

Neural Network

Support Vector 
Machine



k-Nearest Neighbor (kNN) Algorithm
Idea:

?

- Two classes, two features

- We want to assign label to 

unknown data point?

- Label should be red.



Idea:

k-Nearest Neighbor (kNN) Algorithm

- We have similar labels for similar features.

- We classify new test point using similar training data points.

- Given some new test point x for which we need to predict the class y.

- Find most similar data-points in the training data.

- Classify x “like” these most similar data points.

- How do we determine the similarity?

- How many similar training data points to consider?

- How to resolve inconsistencies among the training data points?

Algorithm overview:

Questions:



1-Nearest Neighbor:

k-Nearest Neighbor (kNN) Algorithm

Simplest ML Classifier
Idea: Use the label of the closest known point

Label should be red.

Generalization:
Determine the label of k nearest neighbors and 
assign the most frequent label

Label should be red

k=3

Label should be blue

k=7



Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

Interpretation:



Formal Definition:

k-Nearest Neighbor (kNN) Algorithm

- Instance-based learning algorithm; easily adapt to unseen data



Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm



Decision Boundary:

k-Nearest Neighbor (kNN) Algorithm

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/


Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- No assumptions about the distribution of the data

- Non-parametric algorithm

- No parameters

- Hyper-Parameters 

- k (number of neighbors) 

- Distance metric (to quantify similarity)



Characteristics of kNN:

k-Nearest Neighbor (kNN) Algorithm

- Complexity (both time and storage) of prediction increases with the size 

of training data.

- Can also be used for regression (average or inverse distance weighted 

average)

- For example, 



- For binary classification problem, use odd value of k. Why?

- In case of a tie:

- Use prior information

- Use 1-nn classifier or k-1 classifier to decide

- Missing values in the data

- Average value of the feature.

Practical issues:

k-Nearest Neighbor (kNN) Algorithm
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We need to define distance metric to find the set of k 

nearest neighbors, Sx

k-Nearest Neighbor (kNN) Algorithm



Distance Metric:

k-Nearest Neighbor (kNN) Algorithm



Norm of a vector

k-Nearest Neighbor (kNN) Algorithm

Properties of Norm



Distance Metric:

k-Nearest Neighbor (kNN) Algorithm



Distance Metric:

k-Nearest Neighbor (kNN) Algorithm

Properties of Distance Metrics:



Distance Metric:

k-Nearest Neighbor (kNN) Algorithm



Cosine Distance

k-Nearest Neighbor (kNN) Algorithm

What is the range of values of angular distance 
and what is the interpretation of these values?



- Mismatch in the values of data

- Issue: Distance metric is mapping from d-dimensional 

space to a scaler. The values should be of the same order 

along each dimension.

- Solution: Data Normalization

Practical issues in computing distance:

k-Nearest Neighbor (kNN) Algorithm
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- k=1
Sensitive to noise
High variance
Increasing k makes algorithm less sensitive to noise 

- k=n
Decreasing k enables capturing finer structure of space

Idea: Pick k not too large, but not too small (depends on data)
How?

Choice of k:

k-Nearest Neighbor (kNN) Algorithm



Choice of k:

k-Nearest Neighbor (kNN) Algorithm

- Learn the best hyper-parameter, k using the data.

- Split data into training and validation.

- Start from k=1 and keep iterating by carrying out (5 or 10, for example) 
cross-validation and computing the loss on the validation data using the 
training data.

- Choose the value for k that minimizes validation loss.

- This is the only learning required for kNN.
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Error Convergence:

k-Nearest Neighbor (kNN) Algorithm



Learning Problem

k-Nearest Neighbor (kNN) Algorithm



Bayes Optimal Classifier

k-Nearest Neighbor (kNN) Algorithm

Error Rate:



Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Reference: Cover, Thomas, and, Hart, Peter. Nearest neighbor pattern 
classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27

Error Rate:



Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Error Rate:



Error Convergence:

k-Nearest Neighbor (kNN) Algorithm

Bound on Error Rate:
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Algorithm Computational and Storage Complexity:

k-Nearest Neighbor (kNN) Algorithm

Input/Output:

Steps:



Algorithm:

k-Nearest Neighbor (kNN) Algorithm

1. Find distance between given test point and feature vector of every point in D.

2.  Find k points in D closest to the given test point vector to form a set SX.

3.  Find the most frequent label in the set Sx and assign it to the test point.

Steps: Computational Complexity

Computational Complexity:

Space Complexity:



Outline

- k-Nearest Neighbor (kNN) Algroithm Overview

- Algorithm Formulation

- Distance Metrics

- Choice of k

- Algorithm Convergence

- Storage, Time Complexity Analysis

- Fast kNN

- The Curse of Dimensionality 



Fast kNN:

k-Nearest Neighbor (kNN) Algorithm

- kNN Computational complexity: O(nd)

- How to make it faster?

- Dimensionality Reduction

- Feature Selection (to be covered later)

- PCA (to be covered later)

- Use efficient method to find nearest neighbors

- KD Tree



K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

- k-Dimensional tree

- Extended version of binary search tree in higher dimension

- Pick the splitting dimension 

- Randomly 

- Large variance dimension

- Pick the middle value of the feature along the selected dimension after sorting along 

that dimension. 

- Use this value as the root node and construct a binary tree and keep going.



K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Example: Splitting dimension 



K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Example:



K-D Tree:

k-Nearest Neighbor (kNN) Algorithm

Connection with kNN:
Finding nearest neighbor

Issue: May miss neighbors! Trick to handle this.



K-D Tree - Summary:

k-Nearest Neighbor (kNN) Algorithm

- Enables significant reduction in the time complexity to support 

nearest neighbor algorithm.

- Search to O(logn).

- Trade-offs:

- Computational overhead to construct a tree O(n logn).

- Space complexity: O(n).

- May miss neighbors.

- Performance is degraded with the increase in the dimension of 

future space (Curse of Dimensionality).
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The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

- Refers to the problems or phenomena associated with classifying, 
analyzing and organizing the data in high-dimensional spaces that 
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially 
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the 
data set must also have exponential growth. That means, we need a 
very large dataset to maintain the density of points in the high 
dimensional space.



k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

- For high-dimensional datasets, the size of data space is huge.

For an exponentially large number 
of cells, we need an exponentially 
large amount of training data to 
ensure that the cells are not 
empty.

Ref: CB



k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:



k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:



k-Nearest Neighbor (kNN) Algorithm
The Curse of Dimensionality (Another viewpoint):

D = 1 2 10 50 400 784

0.1 0.19 0.65 0.995 1.000 1.000

0.9 0.81 0.35 0.005 0.000 0.000



k-Nearest Neighbor (kNN) Algorithm
The Curse of Dimensionality (Another viewpoint):

D = 1 2 10 50 400 784

0.01 0.02 0.096 0.395 0.982 0.999

0.99 0.98 0.904 0.605 0.018 0.0004



The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

Connection with kNN:

- With the increase in the number of features or number of dimensions 
of the feature space, data-points are never near to one another.

- kNN algorithm carries out predictions about the test point assuming 
we have data-points near to the test point that are similar to the test 
point.

- As we do not have neighbors in the high dimensional space, kNN
becomes vulnerable and sensitive to the Curse of Dimensionality.



The Curse of Dimensionality:

k-Nearest Neighbor (kNN) Algorithm

Why does kNN work?

Two related explanations;
- Real-world data in the higher dimensional space is confined to a region 

with effective lower dimensionality.
- Dimensionality Reduction (to be covered later in the course)

- Real-world data exhibits smoothness that enables us to make 
predictions exploiting interpolation techniques.

- For example, 
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively 

1 dimensional manifold in probably 1million dimensional space.
- Face recognition in an image (50 or 71 features).
- Spam filter



k-Nearest Neighbor (kNN) Algorithm

Reference:

Overall:
• https://www.cs.cornell.edu/courses/cs4780/2018fa/

• CB: sec 1.1

• HTF: 13.3 up to end of 13.3.2 

• The curse of dimensionality
• CB: 1.4
• KM: 1.4.3
• N. Kouiroukidis and G. Evangelidis, "The Effects of Dimensionality Curse in High Dimensional kNN

Search," 2011 15th Panhellenic Conference on Informatics, Kastonia, 2011, pp. 41-45, doi: 
10.1109/PCI.2011.45.

https://www.cs.cornell.edu/courses/cs4780/2018fa/
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Dimensionality Reduction
Why?

- Increasing the number of inputs or features does not 
always improve accuracy of classification.

- Performance of classifier may degrade with the inclusion 
of irrelevant or redundant features.

- Curse of dimensionality; “Intrinsic” dimensionality of the 
data may be smaller than the actual size of the data.

- Improve the classification performance.

- Improve learning efficiency and enable faster classification.

- Better understanding of the underlying process mapping inputs to output.

Benefits:



Dimensionality Reduction
Feature Selection and Feature Extraction:

Given a set of features, reduce the number of features such that 
“the learning ability of the classifier” is maximized.

Feature Selection:

Select a subset of the existing features.

Feature Extraction:

Transform existing features to obtain a set of 
new features using some mapping function.



Feature Selection:

Dimensionality Reduction

Select a subset of the existing features.

Select the features in the subset that either 
improves classification accuracy or maintain same 
accuracy.

How many subsets do we have?

How do we choose this subset?



Data set:
- Five Boolean features
- y=x1 (or) x2

- x3 = (not) x2

- x4 = (not) x5

Optimal subset:
{x1, x2} or {x1, x3}

Optimization in space of all feature subsets 
would have

Feature Selection:

Dimensionality Reduction

Example:

* Source: A tutorial on genomics by Yu (2004).

Can’t search over all possibilities and 
therefore we rely on heuristic methods.



Feature Selection:

Dimensionality Reduction

How do we choose this subset?

- Filter Methods (unsupervised method)
- Evaluation is independent of the learning algorithm
- Consider the input only and select the subset that 

has the most information

- Wrapper Methods (supervised method)
- evaluation is carried out using model selection the 

machine learning algorithm
- Train on selected subset and estimate error on 

validation dataset

- Feature selection can be considered as an optimization 
problem that involves

- Searching of the space of possible feature subsets
- Choose the subset that is optimal or near-optimal with 

respect to some objective function

Feature Subset Selection

Search subset

Objective Function

Feature 
Subset

Goodness



Feature Selection:

Dimensionality Reduction

How do we choose this subset?

Filter Methods Wrapper Methods

Filter Feature Selection

Search subset

Objective Function

Feature 
Subset

Information 
Content

Wrapper Feature Selection

Search subset

Learning Algorithm

Feature 
Subset

Prediction 
Accuracy



Feature Selection:

Dimensionality Reduction

Filters Method:
- Univariate Methods

- Treats each feature independently of other features

- Calculate score of each feature against the label using the following metrics:
- Pearson correlation coefficient
- Mutual Information
- F-score
- Chi-square
- Signal-to-noise ratio (SNR), etc.

- Rank features with respect to the score

- Select the top k-ranked features (k is selected by the user)



Feature Selection:

Dimensionality Reduction

Filters Method – Ranking Metrics:

- Pearson correlation coefficient (measure of linear dependence)

- Signal-to-noise ratio (SNR)



Feature Selection:

Dimensionality Reduction

Wrappers Method:
- Forward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with empty set as feature subset
- Try adding one feature from the remaining features to the subset
- Estimate classification or regression error for adding each feature
- Add feature to the subset that gives max improvement

- Backward Search Feature Subset Selection Algorithm (Super intuitive)

- Start with full feature set as subset
- Try removing one feature from the subset
- Estimate classification or regression error for removing each feature
- Remove/drop the feature that gives minimal impact on error or reduces the error
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Feature Extraction:

Dimensionality Reduction

Transform existing features to obtain a set of new features using some mapping function.

- The mapping function z=𝑓(x) can be linear or non-linear.

- Can be interpreted as projection or mapping of the data in the higher dimensional 
space to the lower dimensional space.

- Mathematically, we want to find an optimum mapping z=𝑓(x) that preserves the 
desired information as much as possible. 



Feature Extraction:

Dimensionality Reduction

Idea:

- Finding optimum mapping is equivalent to optimizing an objective function.

- We use different objective functions in different methods;

- Minimize Information Loss: Mapping that represent the data as 
accurately as possible in the lower-dimensional space, e.g., Principal 
Components Analysis (PCA).

- Maximize Discriminatory Information: Mapping that best discriminates 
the data in the lower-dimensional space, e.g., Linear Discriminant 
Analysis (LDA).

- Here we focus on PCA, that is, a linear mapping.

- Why Linear: Simpler to Compute and Analytically Tractable.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Given features in d-dimensional space

- Project into lower dimensional space using the following linear transformation

- For example (can you tell me size of matrix W for the following cases),
- find best planar approximation to 4D data
- find best planar approximation to 100D data

- We want to find this mapping while preserving as much information as possible, and ensuring

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Objective 2: the features after mapping have large variance



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Toy Illustration in two dimensions

Most contribution of each 
class lies in this direction

First Principal ComponentSecond Principal 
Component



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Geometric Intuition:

Change of coordinates: Linear combinations 
of features

Ignoring the Second Component/Feature



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Steps to find Principal Components: 

Step 1: Compute Sample Mean:

Step 2: Subtract Sample Mean:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

How do you interpret the entries of the 
matrix? Spend some time and try to 
understand this!

What is special about these vectors?

Zero mean; taken along all feature vectors 



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Special about the Covariance Matrix:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Q: How to select k out of d?

- A: Simple, select the ones corresponding to k largest eigenvalues.

Step 5: Dimensionality Reduction



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further

- Enabled by orthogonality of the principal components

- Objective 2: the features after mapping have large variance

- We have used covariance matrix to define the mapping and used eigenvectors with 
largest eigenvalues, that is, those dimensions capturing the variations in the data. 

- PCA maps the data along the directions where we have most of the 
variations in the data.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- It depends on the amount of information, that is variance, we want to preserve in the 
mapping process.

- We can define a variable T to quantify this preservation of information

How do we choose k?

- T=1, when k=d; No reduction.

- T=0.8, interpreted as that 80% variation in the data has been preserved.



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:
Step 1: Compute sample mean: Step 2: Subtract Sample Mean: Step 3: Calculate the Covariance Matrix:

2.5000    2.4000
0.5000    0.7000
2.2000    2.9000
1.9000    2.2000
3.1000    3.0000
2.3000    2.7000
2.0000    1.6000
1.0000    1.1000
1.5000    1.6000
1.1000    0.9000

0.6900    0.4900
-1.3100   -1.2100
0.3900    0.9900
0.0900    0.2900
1.2900    1.0900
0.4900    0.7900
0.1900   -0.3100
-0.8100   -0.8100
-0.3100   -0.3100
-0.7100   -1.0100

We have divided by n. Some authors 
divide by n-1. It won’t change the 
principal components



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

Step 5: Dimensionality Reduction 3.4591
0.8536
3.6233
2.9054
4.3069
3.5441
2.5320
1.4866
2.1931
1.4073



Feature Extraction - Principal Component Analysis:

Dimensionality Reduction

- Data should be normalized before using PCA for dimensionality reduction.

- Usually, we normalize every feature by subtracting mean of that feature followed by 
dividing with standard deviation of the feature.

- The covariance matrix of the reduced feature is projection along orthogonal components 
(directions) and therefore features are uncorrelated to each other. In other words, PCA 
decorrelates the features.

- Limitation:
- PCA does not consider the separation of data with respect to class label and 

therefore we do not have a guarantee the mapping of the data along dimensions of 
maximum variance results in the new features good enough for class discrimination.

Solution: Linear Discriminant Analysis (LDA) - Find mapping directions along which 
the classes are best separated.

Practical Considerations and Limitations:
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