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Evaluation of Classification Performance
Classification Accuracy, Misclassification Rate (0/1 Loss):

- For each test-point, the loss is either 0 or 1; whether the prediction is correct or 

incorrect. 

- Averaged over n data-points, this loss is a ‘Misclassification Rate’.

Interpretation: 

- Misclassification Rate: Estimate of the probability that a point is incorrectly classified.

- Accuracy = 1- Misclassification rate 

Issue:
- Not meaningful when the classes are imbalanced or skewed.



Evaluation of Classification Performance
Classification Accuracy (0/1 Loss):

Example:
- Predict if a bowler will not bowl a no-ball?

- Assuming 15 no-balls in an inning, a model that says ‘Yes’ all the time will have 

95% accuracy.

- Using accuracy as performance metric, we can say that a model is very accurate, 

but it is not useful or valuable in fact.

Why?

- Total points: 315 (assuming other balls are legal ☺)

- No-ball label: Class 0 (4.76% are from this class)

- Not a no-ball label: Class 1 (95.24% are from this class)

Imbalanced 
Classes



Evaluation of Classification Performance
TP, TN, FP and FN:

- Consider a binary classification problem.



Evaluation of Classification Performance
TP, TN, FP and FN:



Evaluation of Classification Performance
TP, TN, FP and FN:

Example:
- Predict if a bowler will not bowl a no-ball?

- 15 no-balls in an inning (Total balls: 315)

- Bowl no-ball (Class 0), Bowl regular ball (Class 1)

- Model(*) predicted 10 no-balls (8 correct predictions, 2 incorrect)

* Assume you have a model that has been observing the bowlers for the last 15 years 

and used these observations for learning.



Evaluation of Classification Performance
Confusion Matrix (Contingency Table):
- (TP; TN; FP; FN); usefully summarized in a table, referred to as confusion matrix: 

- the rows correspond to predicted class ( ො𝑦)
- and the columns to true class (𝑦)

Actual Labels

Predicted 

Labels

1 (Positive) 0 (Negative)

1 (Positive)
TP FP

0 (Negative)
FN TN

Total

Predicted Total 
Positives

Predicted Total 
Negatives

Total P= TP+FN
Actual 
Total 
Positives

N= P+TN
Actual 
Total 
Negatives



Evaluation of Classification Performance
Confusion Matrix:

Example:
- Disease Detection :

Given pathology reports and 

scans, predict heart disease

- Yes: 1, No: 0

Actual Labels

Predicted 

Labels

1 (Positive) 0 (Negative)

1 (Positive)
TP = 100 FP = 10

0 (Negative)
FN = 5 TN = 50

Total

110

55

Total P = 105 N = 60Interpretation: 

Out of 165 cases

- Predicted: “Yes" 110 times, and “No" 55 times

- In reality: “Yes" 105 times, and “No" 60 times



Evaluation of Classification Performance
Confusion Matrix:

Example:
- Predict if a bowler will not 

bowl a no-ball?

Actual Labels

Predicted 

Labels

1 (Positive) 0 (Negative)

1 (Positive)
TP = 298 FP = 7

0 (Negative)
FN = 2 TN = 8

Total

305

10

Total P = 300 N = 15
Interpretation: 

Out of 315 balls, we had 15 no-balls.

- Model predicted 305 regular balls and 10 no-balls (8 correct predictions, 2 

incorrect).



Evaluation of Classification Performance

Metrics using Confusion Matrix:

Confusion Matrix:

- Accuracy: Overall, how frequently is the classifier correct?

- Misclassification or Error Rate: Overall, how frequently is it wrong?

- Sensitivity or Recall or True Positive Rate (TPR): How often does it predict Positive 
when it is actually Positive?



Evaluation of Classification Performance

Metrics using Confusion Matrix:

Confusion Matrix:

- False Positive Rate: Actual Negative, how often does it 
predict Positive?

- Specificity or True Negative Rate (TNR): When it's actually Negative, how often does it 
predict Negative?

- Precision: When it predicts Positive, how often is it Positive?



Confusion Matrix Metrics:

Evaluation of Classification Performance

Negative Predicted Value



Evaluation of Classification Performance
Confusion Matrix:

- Accuracy: Disease/Healthy prediction accuracy

= (100+50)/165 = 0.91

- Misclassification or Error Rate: Disease/Healthy prediction accuracy

= (10+5)/165 = 0.09

- Sensitivity or Recall or True Positive Rate (TPR): When it's positive, how often does 
the model detected disease?

= 100/105 = 0.95

Metrics using Confusion Matrix (Example: Disease Prediction):



Evaluation of Classification Performance
Confusion Matrix:

- False Positive Rate: Actually heathy, how often does it predict yes?

= 10/60 = 0.17

- Specificity or True Negative Rate (TNR): When it's actually health, how often does it predict 
healthy?

= 50/60 = 0.83

- Precision: When it predicts disease, how often is it correct?

= 100/110 = 0.91

Metrics using Confusion Matrix (Example: Disease Prediction):



Evaluation of Classification Performance

Metrics using Confusion Matrix:

Confusion Matrix:

When to use which?

- Disease Detection: We do not want FN

- Fraud Detection: We do not want FP
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Evaluation of Classification Performance

Precision and Sensitivity (Recall) Trade-off:

Confusion Matrix:

- Disease Detection:

- Recall or Sensitivity (Se); how good we are at detecting diseased people.

- Precision: How many have been correctly diagnosed as unhealthy.

PrecisionSensitivity or Recall 

- We want high Precision and high Se  (=1, Ideally).

- We should combine precision and sensitivity to evaluate the performance of classifier.

- F1-Score

- If we have diagnosed everyone unhealthy, Se=1 (diagnose 

all unhealthy people correctly) but Precision may be low 

(because TN=0 that increases the value of FP).



Evaluation of Classification Performance

Sensitivity and Specificity Trade-off:

Confusion Matrix:

- Disease Detection:

- Sp and Se; how good we are at detecting healthy and diseased people, respectively. 

- If we have diagnosed everyone healthy, Sp=1 (diagnose all healthy people correctly) but 

Se=0 (diagnose all unhealthy people incorrectly)

- Ideally: we want Sp= Se= 1 (perfect sensitivity and specificity) but unrealistic.

SpecificitySensitivity or Recall 



Evaluation of Classification Performance

Sensitivity and Specificity Trade-off:

Confusion Matrix:

Threshold 

Se= 1 Sp= 1

How optimal a pair of sensitivity, specificity values is?

- Is Sp= 0.8, Se= 0.7 better than Sp= 0.7, Se= 0.8?

- The answer depends on the application. 

- In disease diagnosis; 

- happy to reduce Sp in order to increase Se. 

- In other applications, we may have different requirements.

- Trade-off is better explained by ROC curve and AUC.



Evaluation of Classification Performance

ROC (Receiver Operating Characteristic) Curve:

Confusion Matrix:

- Plot of TPR (Sensitivity) against FPR (1 – Specificity) 
for different values of threshold.

- Also referred to as Sensitivity-(1-Specificity) plot.

- Threshold of 0.0, every case is diagnosed as positive.
- Se= TPR = 1
- FPR = 1
- Sp= 0

- Threshold of 1.0, every case is diagnosed as negative.
- Se= TPR = 0
- FPR = 0
- Sp= 1

Threshold 



Evaluation of Classification Performance

ROC Curve and AUC:

Confusion Matrix:

- TPR (Sensitivity): how many correct positive results 
occur among all positive samples.

- FPR (1 – Specificity): how many incorrect positive 
results occur among all negative samples.

- The best possible prediction method
- Se = Sp = 1 (Upper left corner of ROC space)

- Random guess; a point along a diagonal line (the 
so-called line of no-discrimination), No Power!

- Area Under the ROC Curve, abbreviated as (AUC) 
quantifies the power of the classifier.

ROC Curve
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Evaluation of Classification Performance
F1-Score:

- We observed trade-off between recall and precision.

- Higher levels of recall may be obtained at the price of lower values of precision.

- We need to define a single measure that combines recall and precision or other 
metrics to evaluate the performance of a classifier.

- Some combined measures:
- F1 Score
- Matthew’s Correlation Coefficient 
- 11-point average precision
- The Breakeven point



Evaluation of Classification Performance
F1 Score:

- One measure that assesses recall and precision trade-off is weighted harmonic 

mean (HM) of recall and precision, that is, 



Evaluation of Classification Performance
F1 Score:

- HM is preferred as it penalizes model the 

most; a conservative average, that is, for two 

real positive numbers, we have

- Improvement in HM implies improvement in 

AM or GM.

Why harmonic mean?

- We could also use arithmetic mean (AM) or geometric mean (GM).

Different means, minimum and maximum against 
precision. Recall=70% is fixed.



Evaluation of Classification Performance
Matthew’s Correlation Coefficient (MCC):

- Precision, Recall and F1-score are asymmetric. Get a different result if the classes are switched.

- Matthew’s correlation coefficient determines the correlation between true class and predicted 

class. The higher the correlation between true and predicted values, the better the prediction. 

- Defined as

- MCC=1 when FP = FN = 0  (Perfect classification)

- MCC=-1 when TP = TN = 0  (Perfect misclassification)

- MCC=0; Performance of classifier is not better than a random classifier (flip coin)

- MCC is symmetric by design



Evaluation of Classification Performance
11-point Average Precision:

- Adjust threshold of the classifier such that the recall takes the following 11 values 0.0, 0.1., 

…, 0.9, 1.0.

- For each value of the recall, determine the precision and find the average value of precision, 

referred to as average precision (AP).

- This is just uniformly-spaced sampling of Precision-Recall curve and taking average value.

The Breakeven Point:

- Compute precision as a function of recall for different values of thresholds.

- When Precision = Recall, we have a breakeven.
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Formulation:

- Emotion Detection.

- Vehicle Type, Make, model, color of the vehicle from the images streamed by safe city camera.

- Speaker Identification from Speech Signal.

- State (rest, ramp-up, normal, ramp-down) of the process machine in the plant.

- Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

- Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

- Record Home WiFi signals and identify the type of appliance being operated.  

Multi-Class Classification

Examples:



Implementation (Possible options using binary classifiers):

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:

Multi-Class Classification

Option 2: Build an all-vs-all classifier:

There can be other options…



Multiclass Classification:

- How do we define the measures for the evaluation of the performance of multi-class classifier?

- Macro-averaging: We compute performance for each class and then average.

- Micro-averaging: Compute confusion matrix after collecting decisions for all classes and then 

evaluate.

Evaluation of Classification Performance



Multiclass Classification:

Evaluation of Classification Performance

Confusion Matrix

8 5 20

2 10 10

5 5 270

- Predict if a bowler will bowl a no-ball, wide bowl, regular bowl?

- 15 no-balls, 20 wide-balls in an inning (Total balls: 335)

- Model Predictions:

Precision

Recall

No-ball Wide-ball Regular ball

No-ball

Wide-ball

Regular ball

Actual

Classifier

Output



Multiclass Classification:

- For i-th class, recall represents the fraction of data-points classified correctly, that is,

Evaluation of Classification Performance

Confusion Matrix – Recall and Precision:

Recall

- For i-th class, precision represents the fraction of data-points 

predicted to be in class i are actually in the i-th class, that is,

Precision

Accuracy

- Fraction of data points classified correctly, that is,



Multiclass Classification:

- We compute performance for 

each class and then average.

Evaluation of Classification Performance

Confusion Matrix – Macro-Averaging:

8 25

7 295

No-ball
Not a 

No-ball

No-ball

Not a no-
ball

Actual

Classifier

Output

10 12

10 303

Wide
Not 

Wide

Wide

Not Wide

Actual

270 10

30 25

Regular Not Regular

Regular

Not 
Regular

Actual

Recall

Macro-average Recall: 

Confusion Matrix – Each Class:



Multiclass Classification:

- Compute confusion matrix after collecting 

decisions for all classes and then evaluate.

Evaluation of Classification Performance

Confusion Matrix – Micro-Averaging:

Confusion Matrix – Each Class:

288 47

47 623

True False

True

False

Micro-average 

Recall:

8 25

7 295

No-ball
Not a 

No-ball

No-ball

Not a no-
ball

Actual

Classifier

Output

10 12

10 303

Wide
Not 

Wide

Wide

Not Wide

Actual

270 10

30 25

Regular Not Regular

Regular

Not 
Regular

Actual



Multiclass Classification:

- Note Micro-average recall= Micro-average precision = F1 Score = Accuracy (computed from 

confusion matrix)

- Micro-average is termed as a global metric.

- Consequently, it is not a good measure when classes are not balanced.

- Macro-average is relatively a better as we can see a zoomed-in picture before averaging.

- Note Macro-averaging does not take class imbalance into account.

- Weighted-averaging; Similar to Macro averaging but takes a weighted mean instead where 

weight for each class is the total number of data-points of that class.

Evaluation of Classification Performance

Micro-Averaging vs Macro Averaging:

Weighted-average Recall:



Evaluation of Classification Performance
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