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Bayesia N Lea rning Framework
Overview:

- In machine learning, the idea of Bayesian Learning is to
use Bayes Theorem to find the hypothesis function.

Example: Test the fairness of the coin!

Frequentist Statistics:

- Conduct trials and observe heads to compute the probability P(H).
- Confidence of estimated P(H) increases with the number of trials.

- In frequentist statistics, we do not use prior (valuable) information to improve our Hypothesis.
For example, we have information that the coins are not made biased.

Bayesian Learning:

- Assume that P(H)=0.5 (prior or beliefs or Loast experiences).
- Adjust the belief P(H) according to your observations from the trials.
- Better hypothesis by combining our beliefs and observations.

- Each training data point contributes to the estimated probability that a hypothesis is corvect.

- More flexible approach as compared to learning algorithms that eliminate a given hypothesis
inconsistent with any single data point.

LUMS
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Bayesian Learning Framework

Overview:
Supervised Learning Formulation:

Data: D = {(Xlayl)a (X2Jy2))' <t (Xnayn)} C Xd X y

We call the set of possible functions or candidate models (linear model, neural
network, decision tree, etc.) “the hypothesis class”.

Denoted by H.

For a given problem, we wish to select best hypothesis (machine) h € H.

- In Bayesian learning, the best hypothesis is the most probable hypothesis, given
the data D and initial knowledge about the prior probabilities of the various

hypotheses in H.

- We can use Bayes theorem to determine the probability of a hypothesis based on
its prior probability, the observed data and the probabilities of observing various

data given the hypothesis.
S LUMS
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Bayesian Learning Framework

Maximum a Posterior (MAP) Hypothesis or Estimation:

e Find h that maximizes the distribution P(h | D).

Using Bayes theorem, we can write this as
4

~ P(D|h)P(h
/ Hm = P(D) 2\ Prior

Posterior

—= Likelihood function

e The prior probability P(h) is the probability that the hypothesis holds
before looking at the training data. It refelcts our prior knowledge about
candidate hypothesis h.

e P(D) is the probability of the training data given no information about
hypothesis, that is, independent of A.

e P(D | h), likelihood function, quantifies the probability of observing D
given hypothesis h.

e P(h | D), posterior probability, quantifies the influence of data on our
prior probability or our confidence that h holds after observing the data.

LUMS
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Bayesian Learning Framework

Maximum a Posterior (MAP) Hypothesis or Estimation:

e Find h that maximizes the distribution P(h | D).

e Maximizing posterior probability yields

D|h)P(h _ L
haiap = ma;z%%llze P(h| D) = mai%%uze P( IL(D)) (h) hayiap = maximize P(D | h)P(h)

Interpretation:

- We begin with prior distribution of hypothesis.
- Using candidate hypothesis, we determine probability data given hypothesis.

- Using these two, we update posterior probability distribution.

e LUMS
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Bayesian Learning Framework

Maximum Likelihood (ML) Hypothesis or Estimation:

e If each hypthesis h € H is equally probable, we can reformulate MAP
hypothesis as by maximizing the probability of data given hypothesis.
This is termed as maximum likelihood hypothesis given by

hyviap = mai(ér?ﬂlize P(D|h)P(h) ey hyi = ma}i{ér?ﬁlize P(D | h) Maximizing Likelihood function

Example:
- Predict the face side (head, H or tail, T) of the loaded coin.

- If x is our event, we want to learn P(x=H) or P(x=T)=1- P(x=H).
- Data-set: outcomes of n events. (x,=H, x,=T, X5=H, x.=H,....)

- Intuitive prediction: count the number of heads and divide it by n. If this
quantity is greater than 0.5, head is more probable.

- Let’s apply ML estimation to this problem.

LUMS
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Bayesian Learning Framework
Maximum Likelihood (ML) Hypothesis or Estimation:

Example:
e We want to estimate P(x = H) =1 — P(xz = T) and therefore hypothesis

space can be parameteterized by a single variable 0 such that P(x = H) =
0, that is, P(D | h) = P(D | 0).

e Assuming independence between events, we have P(D | h) H p(x; | 0)

e We use log of the likelihood function due to notational convenience and
since the product of probabilities can be very small:

log P(D | h) = 10%1_[]9(3% | 0) = Zlogp(ati | 0)

e ML estimate is given by

hvi, = maximize P(D | h) = 01, = maximize > logp(; | 0)
1=1

LUMS The maximum likelihood estimation maximizes the log-likelihood.
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Bayesian Learning Framework
Maximum Likelihood (ML) Hypothesis or Estimation:

Example:

e We can solve this analytically.

e If number of heads in the data is ng.
Ot = maxi@mize (nH logf + (n —ng)log(l — 9))

e Derivative with respect to 6 yields

e LUMS
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Outline
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- MAP Estimation

- ML Estimation
- Linear Regression as Maximum Likelilhood Estimation
- Naive Bayes Classifier

- Introduction to Bayesian Network
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Linear Regression as ML Estimation

Regression:
| Process or / (X) @
X System Yy y — f(X) —I_ n

Input Noise I Observed

Output

» X
e Assume noise is i.i.d. Gaussian distributed: n ~ N(0,0?).
e y; = f(xi) + n; is also Gaussian distributed: 1y; ~ N(f(x;),0?).
Linear Regression:
f(x) = wlx (Assuming bias term is included in the formulation)

e Hypothesis class H: hypothesis functions of the form f(x) = w’x.

e Problem is to find w given data D. D= {(x1,y1), (X2,92)s- -, Xn,yn)} C X9 x Y

LUMS
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Linear Regression as ML Estimation
Maximum Likelihood (ML) Hypothesis or Estimation:

e We can define likelihood estimate as

hyi, = maximize P(D | h)
heH

e Noting y; ~ N(f(xi),0?).

n

WML, = max&vmize H
1=1

o\ 2T

=  wyr = maximize P(D | f(x))

1

exp (—

(yi — f(xi)) )

202

e Maximizes the log (natural, In) of the function instead.

n

1

(yi —

f(x4))?

W — maximize lo exp (—
ML 11 g (7,1;[1 oo P (

= maximize Z —log(oV2m) + log (eXp (_ (yi

w
1=1

e LUMS
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)) — maximize Z log (
i=1

202 w

o

1 (y; — J(x

\ 2T b (_ 207

— f(x)) )) — maximize Z (— i = J(xi))

1=1




Linear Regression as ML Estimation
Maximum Likelihood (ML) Hypothesis or Estimation:
(i — f(xz-))Z‘)

202

n
WML, :maxévmize E (—

1=1
n

= minimize Z (yi — f (Xi))2 We have seen this before! Squared-ervor.

w
1=1

e For linear regression case: f(x)=w!lx

n

WI, = minimize Z (yi — wai)2 We have an analytical solution.
W
1=1
e We can compute variance as: 1
~ 2 T 2
T = Z(?Jz — Wi X)
Notes: i=1

- Maximizing ML estimate is equivalent to minimizing least-squared error.

- ML Solution is same as least-squared ervor solution.

- This is a probabilistic interpretation or Bayesian explanation of the least-squared ervor
so{utiom and why did we choose squared ervor for defining a loss function.
LUMS
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Classification
Recap:

e We assume we have training data D given by

D = {(x1,91), (X2,%2)5 -+, (Xn,Yn) } C X xy
Binary or Binomial Classification:
e V={0,1} or Y ={-1,1}
- Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.

Multi-class (Multinomial) Classification:
o V={1,2,..., M} (M-class classification)

- Ewmotion Detection.

- Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.

- Speaker Identification from Speech Signal.

- Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

- Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

LUMS
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Logistic Regression

Overview:
- kNN: Instance based Classifier

- Logistic Regression: Discriminative Classifier
- Estimate P(glx) directly from the data

- ‘Logistic regression’ is an algorithm to carry out classification.
- Name is misleading; the word ‘regression’ is due to the fact that the method attempts
to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.

e Mathematically, model is characterized by variables 6.

- A simple form of a neural network.
he(x) = P(y|x) Posterior probability

LUMS

A Not-for-Profit University




Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).
- Logistic regression model:

1 0o
) 61 > R hg(x) >0  class 1
he(x) <0 class 0
z(2) 02 he(x) = 6y + 6'x
R — R
Real-valued output here!

V
LUMS Regression
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Logistic Regression
Model:

- Consider a binary classification problem.
- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic/Sigmoid function

0 1
1 0 0(2) = 1=
2 04
M >  o() —m—— L

1+e heo (z)

z(2) 02 ho(x) = 6y + 6'x

R?—> R
Real-valued output here!

We want probability; Activation function

LUMS between O and 1!
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Logistic Regression
Logistic (Sigmoid) Function

1
__ laelems 1-
e Interpretation: maps (—oo,o0) to (0,1) ()
e Squishes values in (—o0, 00) to (0,1)
e It is differentiable. 0.5
e Generalized logistic function:
L
o(z) = 1 + e—k(z—=20) | | o
-5 -4 -2 0

e Sigmoid: because of S shaped curve

LUMS
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Logistic Regression
Change in notation:

- Treat bias term as an input feature for notational convenience.

1 T
2(1) 6, )
2. > o) — he(x)=0(0"x)
_ 1
28(2) 92 BTX — 1+e_9Tx
R! - R
2(d) 0,4
~ ~—~
X 6
R4 Linear function.
LUMS Linear Regression.
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Logistic Regression
Classification:

1 to
21 6,1
> > o) — ho(x)=0(0
1
CC(Z) 92 BTX — 1+676Tx

e hg(x) = P(y = 1|x) represents the probability of class membership.
e Assign class by applying threshold as

i = {Class 1 o(0"x) > 0.5

Class 0 otherwise

e (0.5 is the threshold defining decision boundary.

e We can also use values other than 0.5 as threshold.

LUMS

A Not-for-Profit University



Logistic Regression

One more interpretation:

1 —0Tx

(1= 16%) = hol) = T—gr. Ply= 0bx) = 1~ hofa) = ——or

e The odds in favor of an event with probability p is p/(1-p).

e Define odds of class 1. P(y — 1|X) — 1

Ply=0x) e 0'x

e Taking log of odds of class 1.

Py =1[x) 1 —-67 T
=1 = —1 =0
Ply = 0x) og g oge X

log

e Interpretation:
logistic regression considers log odds as a linear function of x
logistic regression — a linear classifier of log of odds.

LUMS
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Logistic Regression
Example:

- Disease prediction: Diagnose cancer given size of the tumor.

e Tumor size, x
e Binary output, y = 0 if tumor is benign and y = 1 for malignant tumor.

e Linear regression model attempt

ho(z) = 8'x = 6y + 6,2 e output is real-valued (—oo, 00)
e Logistic regression model

h@(a’}) — 0(90 91:15') — 1

14+e— (ot 012)

sigmoid squishes values from (—o0, 00) to (0,1)

e If hg(x) = 0.65 for any tumor size x, class label? malignant, because hg(x) = P(y = 1|x)

LUMS
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Logistic Regression

Decision Boundary:

1

Py = 1|x) = hg(x) = 0(8'x) = —

(v = 1) = ho(x) = o (67x) = —
. JClass 1 o(07x) > 0.5 1-
V= Class 0 otherwise o(0"x)
. JClass 1 0'x >0 0.5
V= Class 0 otherwise
e All x for which 87x > 0 classified as Class 1. I | g

e What does 87 x > 0 represent?
e It represents a half-space in d-dimensional space.

e 01x =0 represents a hyperplane in d-dimensional space.
Need a brief explanation!

LUMS
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Logistic Regression
Hyper-Plane:

e 01x=0 represent a hyperplane in d-dimensional space.

e d=1 |
QTX:90-|—91.’L'(1) =0 l .

e

0lx = Oy + 91:1:'(1) + 92:}3(2) =0

61 and 6> defines a normal to the hyper-plane.

e Hyper-plane 0”7 x = 0 divides the space into two half-spaces.

e Half-space 87x > 0 e Half-space 87x < 0

LUMS

A Not-for-Profit University Source: https://www.cs.cornell.edu/courses/cs4780/2018sp/lectures/lecturenote03.html

Y




Logistic Regression
Hyper-Plane Interpretation with Bias as a dimension:

e Absorb bias as a dimension.

e Increases feature dimension by 1. Equivalently append constant 1 with
each feature.

e d=10"x=0y+ 0,2 =0

QTX = 90 -+ 9158(1) =0 QTX = 90 (1) + 9135'(1) =0

LUMS
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Logistic Regression

Decision Boundary - Example:

v = Class 0 otherwise

A {Class 1 01x >0

e Predict admission given exam 1 and exam 2 scores (d = 2)
e All x for which 8”x > 0 classified as Class 1.

e 07x =0y + 0,2 + 0,2 =0

e Given after learning from the data.

0y = —92 61 = 92/95 0 =1

e Sigmoid returns close to 1 or 0
for points farther from the boundary.

LUMS

Admission Data m admitted
# notadmitted

Exam 2 Score

60 70 a0 90 100

Exam 1 Score 33'(1)
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Logistic Regression
Non-linear Decision Boundary:

e Can we have non-linear decision boundaries in logistic regression?

e We first understand the origin of the linear decision boundary.

e 01x =0 represents a linear combination of the features.

e Connect with the concept of polynomial regression.

e Replace linear with polynomial; consider the following model, for example,
for d = 2,

Linear boundary: hg(x) = o(6y + 6121 + ,2()

Non-linear boundary: hg(x) = a<90+91x(1)+92x(2)+93 (gg(l))2+94 (33(2))2)

LUMS
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Logistic Regression
Non-linear Decision Boundary:

Non-linear boundary: hg(x) =0 (90+91m(1)+923¢(2)+93 (x(l))2+94 (39(2))2)

e Given after learning from the data.

2

902—225 91:9220 93:94:1 45(;()
2

he(x) = 0'( — 1+ (5(;(1))2 4+ (33(2))2)
0
Boundary: (s01)? + (a)° = 225 .
(Circle of radius 1.5) .
] -4 7

LUMS
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Logistic Regression

Model Training (Learning of Parameters):
e We assume we have training data D given by

D = {(x1,11), (X2,%2), - (Xn,yn)} € X x Y

o )= {07 1}
Logistic regression model:
. T _ 1
hQ(X) T 0(9 X) o 1_|_€—9Tx
0 = [0y,64,...,04] 0 represents d + 1 parameters of the model.

- Objective: Given the training data, that is n training samples, we want to find the

parameters of the model.
- We first formulate the loss (cost, objective) function that we want to optimize.

- We will employ gradient descent to solve the optimization problem.

LUMS
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Logistic Regression
Loss/Cost Function:

- Candidate 1: Squared-error, the one we used in regression.

mn

L(0) = lzn: (ho(xi) — yi)2 = EZ (J(HTXi) - yi)Z
2 2

1 Z” 1 2

- We wish to have a loss function that is differentiable and convex.

- The squared-ervor is not a convex function due to sigmoid operation.

- Due to non-convexity, we cannot numerically solve to find the global minima.

- Furthermore, the hypothesis function is estimating probability and we do not use

difference operation to determine the distance between the two probability distributions.

LUMS
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Logistic Regression
Loss/Cost Function:

- Candidate 2: Cross entropy loss or Log loss function is used when classifier
output is in terms of probability.
- ldea: Cross-entropy loss increases when the predicted probability diverges
from the actual label.
- If the actual class is 1 and the model predicts O, we should highly penalize

it and vice-versa.

AN

- Loss/cost function for single training example:

) —log(he(x:)) y=1
COSt(hB(Xi)ayi) — {_ log(1 — hg(x;)) y=20

fy=1 ify=20

For y; = 1,
e cost=0 when hg(x;) =1 e cost=oco when hg(x;) =0

- Mismatch is penalized: larger mistakes get larger penalties

e LUMS
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Logistic Regression
Loss/Cost Function:

- We can also express the loss/cost for one training sample as

) —log(he(x;)) y=1
COSt(hG(Xi)ayi) — {_ log(l . he(Xz‘)) y=20

cost(hg(xz-), y@) = —y; log(he(xi)) — (1 — y;) log(1 — he(x;))
- Using this formulation, we define the loss function:
L(O) =— Zn:y@ log(he(x;)) + (1 — y;)log(1l — he(x;))
i=1
- Since cost for each sample penalizes mismatch, this loss function prefers the corvect class

[abel to be more likely.

- Finding parameters that minimizes loss function or maximizes negative of the loss function

is, in fact, maximum likelihood estimation (MLE). How?

e LUMS
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Logistic Regression

Loss/Cost Function:
- We can also reformulate the loss/cost for one training sample as

cost (ho(x:),y:) = —yilog(he(x:)) — (1 — i) log(1 — he(x;))

cost(hg(xi),yi) = —log (he(xz'))yi (1— he(Xi))(l_y¢)>

Inside the log; we have a
e likelihood function since hg(x;) gives us probability of y; = 1.

e probability mass function, (p¥i)(1 — p)} =¥, of Bernoulli random variable.
e Cost is the negative log-likelihood function, also referred to as cross-entropy loss.
e Minimizing cost; equivalent to maximization of log-likelihood or likelihood.

e Therefore, @ that minimizes £(0), maximizes likelihood.

LUMS
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Logistic Regression
Model Training (Learning of Parameters):

- We have following optimization problem in hand.:

minigmize L(O) =— ; y; log(he(xi)) + (1 — i) log(1 — he(x;))

- We do not attempt to find analytical solution.
- We can use properties of convex functions, composition rules and concavity of log to
show that the loss function is a convex function.

- We use gradient descent to numerically solve the optimization problem.

e LUMS
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Logistic Regression
Gradient Descent:

e For gradient descent, we defined the following update in each iteration:

oL
93(—93—0{8—93, Oi>0
oL

e -, Rate of change in the loss function with respect to 6,
J

e « is referred to as step size or learning rate.

e Idea: step size in the direction of negative of the derivative.

Algorithm (we have seen this before):
Overall:

e Start with some 8 € R? and keep updating to reduce the loss function
until we reach the minimum. Repeat until convergence

Pseudo-code:

e Initialize @ € R<.

e Repeat until convergence:

oL
0; < 0; —a——, foreach ¢=0,1,2,...,d 0« 0—aVL(O) Note: Simultaneous update.

Lums %%

A Not-for-Profit University




Logistic Regression

Gradient Descent Computation:

e How to compute %?
J

- Zy@ log(he(x;)) + (1 — y;) log(1 — he(x;))

e Derivative is linear; drop subscript ¢« and compute for each training sample.

0 1 1 0
_ _ — (1 —
89 (y log(hg(x)) + (1 — y) log(1 hg(X))) (y ho (X) (1—-1y) T he(X)) 90, (ha(X))
1 e—GTx
e Noting he(x) = L — he(x) = gL
e We can write
o 6_9Tx %) e_eTx 1 _ ,
h — (8"7x) = ) = 1 — ()
89 ( 9( )) (1 n e_ng)Z 893 (9 X) 1+ o—0Tx | i o—0Tx T hg(X)( hQ(X)) )

e LUMS
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Logistic Regression
Gradient Descent Computation:

77 (110E(h0) + (1 = ) loe(1 ~ ho(x) )

i - — X J
:( 1 1 )83(%(}()) g7 (ho()) = ho(x)(1 = ho(()) 2

Yoo~ Y YT e

_ Y —he() = (L =9)ho(X) py(x)(1 = hg(x)) 2
hg(X)(l — hg(X))

— (y — hg(X))x(j) = —(he(X) — y) x(j)
Overall:
OL(0) _

20; Z 53 (yz log(he(x:)) + (1 — i) log(1 — he(xi)))

e LUMS

A Not-for-Profit Uni




Outline

- Logistic Regression

- Decision Boundaries

- Loss/Cost Function

- Logistic Regression Gradient Descent

- Multi-class Logistic Regression

e LUMS

A Not-for-Profit Uni



Logistic Regression

Multi-Class (Multinomial) Classification:
o V=1{0,1,2,...,M — 1} (M-class classification)

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:

e Train M different binary logistic regression classifiers ho(x), h1(x), ..., har—1(x).

e Classifier h;(x) is trained to classify if x belongs to i-th class or not.
e For a new test point z, get scores for each classifier, that is, s; = h;(z).
e s, represents the probability that z belongs to class 1.

e Predict the label as § = max Si
i=0,1,2,....,M—1

LUMS
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Logistic Regression

Multi-Class (Multinomial) Classification:
o V=1{0,1,2,...,M — 1} (M-class classification)

Option 2: Build an all-vs-all classifier (commonly known as one-vs-one classifier):

e Train (]\2/[ ) = (M)(Qﬂ different binary logistic regression classifiers h; ;(x).

e Classifier h; j(x) is trained to classify if x belongs to i-th class or j-th
class.

e For a new test point z, get scores for each classifier, that is, s; ; = h; ;(2).

e s;; gives the probability of z being from class 7 and not in class j.

e Predict the label g for which the sum of probabilities is maximum. f:elecfu{’ibiesl fv‘::x‘:vwlt;cvpv\\
Example:
e Consider a problem with 3 classes, A, B and C. Pi(A) + P3(A)
Classifier 1 ENZY@.Y Classifier 2 Py(B) Classifier 3 [ZY0Z) Pi(B) + Py(B)
Avs B Pl(B) BvsC PZ(C) AvsC PS(C)
P (C) + P3(C
LUMS >(C) 3(C)
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Logistic Regression

Multi-Class (Multinomial) Logistic Regression:
- ldea: Extend logistic regression using softmax instead of logistic (sigmoid).

- We have following logistic regression model for binary classification case (M=2).

1 — 6

eD)

61

e

92 HTX =

()

04

e hg(x) = P(y = 1|x) represents the probability of membership of class 1.

e Model: weighted sum of features followed by sigmoid for squishing the
values of weighted sum between 0 and 1.

1 69Tx eBTx
— — — Py =1|x) = Ply=1|x) =
Py = 1|x) = he(x) g (y=1]x) = 5 ] (y=1x) = 5 0
e x 1 e?
Plyu=0lx)=1—-h — P(y = 0|x) = Py =0|x) = —%
(y=08) =1~ ho(x) = ——5m (=0 = G PlU=0K) = Zm—7

LUMS
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

- For M classes, we extend the formulation of the logistic function.

- Again, note that the model gives us probability of class membership.
- We assign the label that is more likely.

e Noting this, we build a model for m-th class as

0., x

Py = m[x) = he,,(X) = 57
3 o0 Tx 0,,,— model parameters
k=0

e Model: weighted sum of features followed by softmax function.

e Softmax - extension of logistic function:

(2) 1 e” o () 1 e~m
o(z) = = softmax(z,,) = =
l+e %2 e*+el " 14+ e 7 Mil »
e
Logistic function for 2 classes. =0

LLUMS Softmax for M classes.
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

0., x

P(y = m|x) = he,, (x) = —

Mz—:l OuTx 0,,— model parameters

k=0

- A critical assumption here: no ordinal relationship between the classes.
- Linear function for each of the m classes.
- The softmax function

- Input: a vector of M real numbers

- Output: M probabilities proportional to the exponentials of the input numbers.

e We have 0,,, = [0,,.0,0m.1,--.,0m.q] for each class m ={0,1,..., M — 1}.

e In total, we have (d + 1) x M parameters.

LUMS
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Logistic Regression

Multi-Class Logistic Regression — Graphical Representation of the Model:

input (features)
X

90TX Softmax
0 0, > > P(y = 0|x) = he, (x)
T
@ o, — L x, oOm T > P(y = 1|x) = hg, (x)
T eGkTX
O 0, —Prx, 2 > Ply=20x) = o, (%

-
L Ot > Py =

Yy
LUMS o 5%
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Logistic Regression
Multi-Class (Multinomial) Logistic Regression — Cost Function

e For binary classification, we have:

L£(8) =~ yilog(he(x:)) + (1 - y;) log(1 — he(xi))

=1

e Extending the same for multi-class logistic regression:

n M-—1
>y ) log (he,, (x;))
1=1 m=0
n M-—1 GmTXz
o(y ) log (Mi )
i=1 m=0 Z eOr” x;
k=0

e LUMS
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Logistic Regression

Summary:

- Employs regression followed by mapping to probability using logistic function
(binary case) or softmax function (multinomial case).

- Do not make any assumptions about distributions of classes in feature space.

- Decision boundaries separating classes are linear.

- [t provides a natural probabilistic view of class predictions.

- Loss function is formulated using cross entropy loss.

- Can be trained quickly using gradient descent.

- Computationally efficient at classifying (needs inner product only)

- Model coefficients can be interpreted as indicators of importance of the features.

LUMS
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