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Reference: Chapter 6 (Machine Learning by Tom Mitchell)



Overview:

Bayesian Learning Framework

- In machine learning, the idea of Bayesian Learning is to 
use Bayes Theorem to find the hypothesis function.

Example: Test the fairness of the coin!

Frequentist Statistics:
- Conduct trials and observe heads to compute the probability P(H).
- Confidence of estimated P(H) increases with the number of trials.
- In frequentist statistics, we do not use prior (valuable) information to improve our Hypothesis. 

For example, we have information that the coins are not made biased.

Bayesian Learning:
- Assume that P(H)=0.5 (prior or beliefs or past experiences).
- Adjust the belief P(H) according to your observations from the trials.
- Better hypothesis by combining our beliefs and observations.

- Each training data point contributes to the estimated probability that a hypothesis is correct.
- More flexible approach as compared to learning algorithms that eliminate a given hypothesis 

inconsistent with any single data point.



Overview:

Bayesian Learning Framework

Supervised Learning Formulation:

- In Bayesian learning, the best hypothesis is the most probable hypothesis, given 
the data D and initial knowledge about the prior probabilities of the various 
hypotheses in H.

- We can use Bayes theorem to determine the probability of a hypothesis based on 
its prior probability, the observed data and the probabilities of observing various 
data given the hypothesis.



Maximum a Posterior (MAP) Hypothesis or Estimation:

Bayesian Learning Framework

Posterior Prior

Likelihood function



Maximum a Posterior (MAP) Hypothesis or Estimation:

Bayesian Learning Framework

- We begin with prior distribution of hypothesis.

- Using candidate hypothesis, we determine probability data given hypothesis.

- Using these two, we update posterior probability distribution.

Interpretation:



Maximum Likelihood (ML) Hypothesis or Estimation:

Bayesian Learning Framework

Maximizing Likelihood function

Example:
- Predict the face side (head, H or tail, T) of the loaded coin.

- If x is our event, we want to learn P(x=H) or P(x=T)=1- P(x=H).

- Data-set: outcomes of n events. (x1=H, x2=T, x3=H, x4=H,….)

- Intuitive prediction: count the number of heads and divide it by n. If this 
quantity is greater than 0.5, head is more probable. 

- Let’s apply ML estimation to this problem.



Maximum Likelihood (ML) Hypothesis or Estimation:

Bayesian Learning Framework

Example:

The maximum likelihood estimation maximizes the log-likelihood.



Maximum Likelihood (ML) Hypothesis or Estimation:

Bayesian Learning Framework

Example:
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Regression:

Linear Regression as ML Estimation

Input Observed 
Output

Process or 
System

nNoise

Linear Regression:

(Assuming bias term is included in the formulation)



Maximum Likelihood (ML) Hypothesis or Estimation:

Linear Regression as ML Estimation



Maximum Likelihood (ML) Hypothesis or Estimation:

Linear Regression as ML Estimation

Notes:
- Maximizing ML estimate is equivalent to minimizing least-squared error.

- ML Solution is same as least-squared error solution.

- This is a probabilistic interpretation or Bayesian explanation of the least-squared error 
solution and why did we choose squared error for defining a loss function.

We have seen this before! Squared-error.

We have an analytical solution.
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- Emotion Detection.

- Vehicle Type, Make, model, of the vehicle from the images streamed by road cameras.

- Speaker Identification from Speech Signal.

- Sentiment Analysis (Categories: Positive, Negative, Neutral), Text Analysis.

- Take an image of the sky and determine the pollution level (healthy, moderate, hazard).

Classification

Multi-class (Multinomial) Classification:

Recap:

Binary or Binomial Classification:

- Disease detection, spam email detection, fraudulent transaction, win/loss prediction, etc.



Overview:
- kNN: Instance based Classifier

- Logistic Regression: Discriminative Classifier

- Estimate P(y|x) directly from the data

- ‘Logistic regression’ is an algorithm to carry out classification. 

- Name is misleading; the word ‘regression’ is due to the fact that the method attempts 

to fit a linear model in the feature space.

- Instead of predicting class, we compute the probability of instance being that class.

- A simple form of a neural network.

Logistic Regression



Model:

- Consider a binary classification problem.

- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic Regression

Real-valued output here!

Regression



Model:

- Consider a binary classification problem.

- We have a multi-dimensional feature space (d features).

- Features can be categorical (e.g., gender, ethnicity) or continuous (e.g., height, temperature).

- Logistic regression model:

Logistic Regression

Real-valued output here!

We want probability;
between 0 and 1!

Logistic/Sigmoid function

Activation function



Logistic (Sigmoid) Function 

Logistic Regression



Change in notation:

- Treat bias term as an input feature for notational convenience.

Logistic Regression

Linear function.
Linear Regression.



Classification:

Logistic Regression



One more interpretation:

Logistic Regression



Example:

- Disease prediction: Diagnose cancer given size of the tumor.

Logistic Regression
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Decision Boundary:

Logistic Regression



Hyper-Plane:

Logistic Regression

Source: https://www.cs.cornell.edu/courses/cs4780/2018sp/lectures/lecturenote03.html



Hyper-Plane Interpretation with Bias as a dimension:

Logistic Regression

Source: https://www.cs.cornell.edu/courses/cs4780/2018sp/lectures/lecturenote03.html



Decision Boundary - Example:

Logistic Regression



Non-linear Decision Boundary:

Logistic Regression



Non-linear Decision Boundary:

Logistic Regression

(Circle of radius 1.5)
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Model Training (Learning of Parameters):

- Objective: Given the training data, that is n training samples, we want to find the 

parameters of the model.

- We first formulate the loss (cost, objective) function that we want to optimize.

- We will employ gradient descent to solve the optimization problem.

Logistic Regression

Logistic regression model:



Loss/Cost Function:

- Candidate 1: Squared-error, the one we used in regression.

Logistic Regression

- We wish to have a loss function that is differentiable and convex.

- The squared-error is not a convex function due to sigmoid operation.

- Due to non-convexity, we cannot numerically solve to find the global minima.

- Furthermore, the hypothesis function is estimating probability and we do not use 

difference operation to determine the distance between the two probability distributions.



Loss/Cost Function:

- Candidate 2: Cross entropy loss or Log loss function is used when classifier 

output is in terms of probability.

- Idea:  Cross-entropy loss increases when the predicted probability diverges 

from the actual label.

- If the actual class is 1 and the model predicts 0, we should highly penalize 

it and vice-versa. 

Logistic Regression

- Loss/cost function for single training example:

- Mismatch is penalized: larger mistakes get larger penalties



Loss/Cost Function:

- We can also express the loss/cost for one training sample as

Logistic Regression

- Using this formulation, we define the loss function:

- Since cost for each sample penalizes mismatch, this loss function prefers the correct class 

label to be more likely.

- Finding parameters that minimizes loss function or maximizes negative of the loss function 

is, in fact, maximum likelihood estimation (MLE). How?



Loss/Cost Function:

- We can also reformulate the loss/cost for one training sample as

Logistic Regression



Model Training (Learning of Parameters):

- We have following optimization problem in hand:

Logistic Regression

- We do not attempt to find analytical solution.

- We can use properties of convex functions, composition rules and concavity of log to 

show that the loss function is a convex function.

- We use gradient descent to numerically solve the optimization problem.
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Gradient Descent:
Logistic Regression

Algorithm (we have seen this before):
Overall:

Pseudo-code:

Note: Simultaneous update.



Gradient Descent Computation:

Logistic Regression



Gradient Descent Computation:

Logistic Regression

Overall:
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Multi-Class (Multinomial) Classification:

Logistic Regression

Option 1: Build a one-vs-all (OvA) one-vs-rest (OvR) classifier:



Multi-Class (Multinomial) Classification:

Logistic Regression

Option 2: Build an all-vs-all classifier (commonly known as one-vs-one classifier):

Example:

Classifier 1
A vs B

Classifier 2
B vs C

Classifier 3
A vs C

Select label for which 
the  sum is maximum



Multi-Class (Multinomial) Logistic Regression:

- Idea: Extend logistic regression using softmax instead of logistic (sigmoid).

- We have following logistic regression model for binary classification case (M=2).

Logistic Regression



- For M classes, we extend the formulation of the logistic function.

- Again, note that the model gives us probability of class membership.

- We assign the label that is more likely.

Logistic Regression
Multi-Class (Multinomial) Logistic Regression:

Logistic function for 2 classes.

Softmax for M classes.



Multi-Class (Multinomial) Logistic Regression:

Logistic Regression

- A critical assumption here: no ordinal relationship between the classes. 

- Linear function for each of the m classes.

- The softmax function

- Input: a vector of M real numbers

- Output: M probabilities proportional to the exponentials of the input numbers.



Multi-Class Logistic Regression – Graphical Representation of the Model:

Logistic Regression



Multi-Class (Multinomial) Logistic Regression – Cost Function

Logistic Regression



Summary:

Logistic Regression

- Employs regression followed by mapping to probability using logistic function 

(binary case) or softmax function (multinomial case).

- Do not make any assumptions about distributions of classes in feature space.

- Decision boundaries separating classes are linear.

- It provides a natural probabilistic view of class predictions.

- Loss function is formulated using cross entropy loss.

- Can be trained quickly using gradient descent.

- Computationally efficient at classifying (needs inner product only)

- Model coefficients can be interpreted as indicators of importance of the features.
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