
Machine Learning

EE514 – CS535

Introduction to Deep Learning and 
Convolutional Neural Networks

Zubair Khalid

School of Science and Engineering
Lahore University of Management Sciences

https://www.zubairkhalid.org/ee514_2023.html

https://www.zubairkhalid.org/ee514_2021.html


Outline

- Deep Learning Overview

- Convolutional Neural Networks

Reference: https://cs231n.github.io/convolutional-networks/



Deep Learning (DL)
Overview:

- We have already studied deep learning

- Deep Learning = Deep Neural Network

- Using a neural network with several layers of nodes

- Deep: high number of hidden layers

Deep neural network – generalize very well as they are capable of 
learning the true underlying features.



Deep Learning (DL)
Difference between ML and DL:

- High number of layers in deep neural network enables 

- feature identification

- processing in a series of stages

DL

Multi-layer networks have been around but what has changed recently?

ML



Now we have more 

- Data; deep learning needs more data 

- Computing power (availability of GPUs, parallel processing)

- New tricks to learn the weights of the network

Deep Learning (DL)
Difference between ML and DL:



Deep Learning (DL)
New way to train Deep Neural Networks:

First, train this layer

Then this layer

Then this layer

Then this layer

Then this layer

We train layers of the network sequentially

We train each of the non-output layer to act as an autoencoder.



Deep Learning (DL)
AutoEncoders:

- A type of neural network that is used to learn data encodings (unsupervised).

- In general, autoencoder has three parts; 

- Encoder

- bottleneck (code, latent representation) 

- Decoder

- A simple example: 

An auto-encoder (one hidden layer network) is trained 

to reproduce the input using standard learning algorithm.

Input Input

Idea:

- Learn a lower-dimensional representation (encoding) 

for a higher-dimensional data.

- Capture the most important parts of the input.

In other words, training autoencoder forces the ‘hidden layer’ units to 
become good feature detectors.



Deep Learning (DL)
AutoEncoders – Representation Example; Linear (PCA) vs non-linear :

30 neurons



Deep Learning (DL)
AutoEncoders – Representation Example; Deeper:



Deep Learning (DL)
AutoEncoders – Compression Example:



Deep Learning (DL)
Denoising AutoEncoders:

Idea: The denoising autoencoder gets rid of noise by learning a representation of 

the input where the noise can be filtered out easily.

Code
(Latent representation)



Deep Learning (DL)
Overview:

- This is the overall idea!

- There are many types of deep neural networks, different architectures, 

different types of autoencoder, and different training algorithms

- Fast growing research in the area!



Convolutional Neural Networks (CNNs)
Overview:

Motivation:

Consider an object detection (classification) problem from images using neural network.

For example: CIFAR-10 dataset 

- 10 classes, Input image is 32x32x3 = 3072 

Fully connected neural network

- Treats input as a vector

- Each neuron in the first layer will have 3072 weights

For 400x400x3 image, each neuron has 480,000 weights 

Very large number of parameters!

Why? Regular Neural Network treats input as a vector

Solution: Exploit the structure in the input data



Convolutional Neural Networks (CNNs)
Overview:

- Convolutional Neural Networks exploits the structure in the input, that is, a fact that 

the input consists of images.

- Instead of treating image as an input vector and each layer as a column of neurons, 

we

- take image as an input

- arrange neurons in 3 dimensions: width, height and depth in each layer

- Each layer transforms an input volume (3D) to an output 3D volume.



Convolutional Neural Networks (CNNs)
Overview:

Regular Neural Network Convolutional Neural Network (CNN)

In CNNs, the structure of image is exploited, and each layer transforms a volume of activations 
to an output volume through differentiable function that may or may not have parameters.

In CNN, we use three main types of layers to build network architecture:
- Convolutional layer - Pooling layer - Fully-connected layer



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolution Operation:



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolution in 2D:

Convolution leverages three important ideas that 
can help improve a machine learning system: 

- Sparse interactions
- Kernel smaller than the input

- Parameter sharing 

- Equivariant Representations
- Equivariance to translations



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Convolutional layer parameters consists of a set of learnable filters.

- Intuitively, network learn filters that activate when they see some type of visual 

feature e.g.,

- an edge of some orientation or boundary of the shape on the first layer

- wheel like patterns on higher layers of network

- Each filter in a set of filters produces a separate 2-dimensional activation map.

- These 2D maps are stacked along the depth dimension to produce output volume.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

- Instead of connecting each neuron to all the neurons in the previous volume, CNN 

connects the neuron to a local region in the input volume controlled by 

hyperparameter referred to as receptive field (denoted by F).

- Extent of this connectivity is always equal to the depth of input volume.

- Connections are local along height and width but always full along the depth of 

input volume.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Example:

Input: 32x32x3 image

Receptive field: 5x5

Each neuron in the convolutional layer will connect to 5x5x3 region in input volume.

Total weights: 76 = 5x5x3 weights + 1 bias parameter



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- 3 hyper-parameters control the arrangement of neurons in the output volume

- Depth

- Stride

- Zero-padding

- Depth (denoted by k): 

- It is equal to the number of filters we want to use.

- Each filter is assumed to reveal something different in the input.

- The neurons that are all looking at the same region of the input as a depth column.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- Stride (denoted by S): 

- Controls the amount of translation in the convolution operation.

- Stride=1: filter is translated (moved) one pixel when we slide the filter.

- Stride=2: filter is translated (moved) two pixel when we slide the filter.

- Stride=2 produces smaller output volume as compared to stride=1.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

- Zero-padding (denoted by P):

- To handle the convolution along the boundary points, we zero-pad input around the 

borders. The amount of zero-padding controls the spatial size of the output volume.

Source: https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Spatial Arrangement of Neurons in the Output Volume:

For

- F – receptive field size, S – stride, P – amount of zero padding and W – Input volume size

- Output volume slice size: 1 + (W-F+2P)/S

- Example:

- 7x7 input, 3x3 filter, 0 padding and 1 stride

- 1 + (W-F+2P)/S = 5

- 5x5 output

- With 2 stride 

- 1 + (W-F+2P)/S = 3

- 3x3 output



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing

- Number of parameters can be further reduced by parameter sharing.

- Idea:

- Neurons at each depth slice share the same weights and a bias.

- At each depth level, we have a 2D slice and we use same parameters for every neuron at 

each depth level.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing - Example

- Input: 227x227x3

- First convolutional layer: F=11, S=4, P=0, depth=96 

- Output slice size: 1+(W-F+2P)/S = 55

- Without parameters sharing: 

- Number of parameters per depth slice: 55x55x(11x11x3+1)

- With parameters sharing: 

- Number of parameters per depth slice: 11x11x3+1



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Parameter Sharing

- Q: What is the benefit of parameter sharing? 

- A: 1) Significant reduction in the number of parameters.

2) Convolutional layer output can be computed by simply convolving filter with an input.

- Each neuron of the depth slice has same parameters which means

- Shared weights can be interpreted as a filter.

- The depth slice output is simply a convolution of the filter and the input.

- Parameter sharing is also intuitive because if the filter is detecting an edge at some spatial 

position, we also want to detect the edge in a similar way at all other positions.



Convolutional Neural Networks (CNNs)
Convolutional Layer:

Summary:

- Accepts a volume of size W1XH1XD1

- 4 Hyper-parameters define the convolutional layer

- Number of filters, k - Spatial extent of each filter, F

- Stride, S - Zero-padding, P

- Produces a volume of size W2XH2XD2

- W2 = 1 + (W1-F+2P)/S - H2 = 1 + (H1-F+2P)/S

- D2 = k (depth)

- With parameters sharing, the number of parameters are FxFxD1 weights and 1 bias per depth 

slice and FxFxD1xk weights and k biases overall

- The d-th depth slice output is given by the convolution of d-th filter and the input volume.



Convolutional Neural Networks (CNNs)
AlexNet:



Convolutional Neural Networks (CNNs)
Pooling Layer:

- We usually use pooling layer between the convolutional layers in CNNs.

- The role of pooling layer is to progressively reduce the spatial size of the volume to reduce

- the number of parameters

- computation time

- Idea: The pooling layer operates independently on every depth slice of the input and resizes it 

spatially using the ‘Max’ operation.

- Example:



Convolutional Neural Networks (CNNs)
Pooling Layer:

- Pooling layer is defined by two hyper-parameters

- Spatial extent – F

- Stride – S 

- In the example, F=2 and S=2

- Input: a volume of size W1XH1XD1

- Output: a volume of size W2XH2XD2

- W2 = 1 + (W1-F)/S - H2 = 1 + (H1-F)/S

- D2 = D1 (same depth)

- Pooling layer does not have any parameters.



Convolutional Neural Networks (CNNs)
Pooling Layer:

- Instead of Max-Pooling, other pooling techniques are also adopted such as 

- average pooling 

- L2 norm pooling

- These days, research has suggested to use bigger strides at the convolutional layer level instead 

of frequent pooling layers.



Convolutional Neural Networks (CNNs)
AlexNet:


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

