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Machine Learning

kNN Algorithm: Overview, Analysis, and Convergence

School of Science and Engineering
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Supervised Learning
Classification Algorithms or Methods

Predicting a categorical output is called classification




Idea:

k-Nearest Neighbor (kNN) Algorithm
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- Two classes, two features

- We want to assign label to

unknown data point?

- Label should be red.



k-Nearest Neighbor (kNN) Algorithm

Idea:

- We have similar labels for similar features.

- We classify new test point using similar training data points.
Algorithm overview:
- Given some new test point x for which we need to predict the class y.

- Find most similar data-points in the training data.

- Classify x “like”’ these most similar data points.

Questions:

- How do we determine the similarity?
- How many similar training data points to consider?

—- How to resolve inconsistencies among the training data points?
< L UMS g g P
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k-Nearest Neighbor (kNN) Algorithm

1-Nearest Neighbor: ®
Simplest ML Classifier O
ldea: Use the label of the closest known point Label should be red.
o &
@

Generalization:

Determine the label of k nearest neighbors and
assign the most frequent label

©
© Label should be red
©
O Label should be blue
LUMS k=3 k=7
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k-Nearest Neighbor (kNN) Algorithm

Formal Definition:
e We assume we have training data [ given by

D = {(Xlayl)a (X27y2)7 SR (Xnayn)} C Xd N
e V={1,2,..., M} (M-class classification)

e For a point x € X%, we define a set Sy C D as a set of k neighbors.

e Using the function ‘dist’ that computes the distance between two points
in X% we can define a set Sy of size k as

dist(x, x") > X dist(x,x”), V(x',y") € D\ Sy
X//’y// E %

Interpretation:
Every point in D but not in Sy is at least as far
‘ LUMS away from x as the furthest point in S.
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k-Nearest Neighbor (kNN) Algorithm

Formal Definition:

e Using the Sy, we can define a classifier as a function that gives us most
frequent label of the data points in Sk

h(x) = mode({y" : (z",y") € Sk})

- Instance-based learning algorithm; easily adapt to unseen data

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Decision Boundary:

For k£ = 1, kNN defines a region, called decision boundary or region, in the
space. Such division of the featue space is referred to as Voronoi partitioning.

We can define a region R; associated with the feature point x; as

R; = {x : dist(x,x;) < dist(x,x;), i # j}

For example, Voronoi partitioning using
Euclidean distance in two-dimensional space.

Classification boundary changes with
the change in £ and the distance metric.

LUMS
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k-Nearest Neighbor (kNN) Algorithm

Decision Boundary:

Demonstration

https://demonstrations.wolfram.com/KNearestNeighborKNNClassifier/

LUMS
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k-Nearest Neighbor (kNN) Algorithm

Characteristics of kNN:

- No assumptions about the distribution of the data
- Non-parametric algorithm

- No parameters

- Hyper-Parameters
- k (number of neighbors)

- Distance metric (to quantify similarity)

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Characteristics of kNN:

- Complexity (both time and storage) of prediction increases with the size

of training data.

- Can also be used for regression (average or inverse distance weighted
average)

1
- For examp(e, Y= = qu:, (mez‘) € Sx

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Practical issues:

~- For binary classification problem, use odd value of k. Why?

- In case of a tie:
- Use prior information

~ Use 1 -nn classifier or k-1 classifier to decide

- Missing values in the data

- Average value of the feature.

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

We need to define distance metric to find the set of k

nearest neighbors, S,

e Recall we defined a set Sy of size k as

dist(x, x") > X dist(x,x"), V(x',y') € D\Sx
X,,,y’, E %

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

e Fuclidean  gigt (x,x")

) =l =Xl = | Y (@i — a})?
\=
d
e Manhattan  dist(x,x’) = ||x — x||1 = Z lz; —
i=1
Euclidean

Manhattan
Manhattan
Manhattan

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Norm of a vector

e p-norm of a vector x € R?

d
1/p
%[l = (Z|$z|p) , p=1
Properties of Norm —1

Non-negative, ||x|[, > 0

Absolutely homogenous: ||ax||, = |a|||x||,

ax|l, =0 <= x =0

| -Hp | | | | NG
Triangular inequality, ||x + x'||, < ||x]l, + ||x'||»

Manhattan
Manhattan 12

Manhattan
||XHq < ||X||P7 p=<q

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

e Fuclidean dist(x,x’) =[x — x'||2 = Z(g}z — )2

p p=2
e Manhattan gist(x,x') = ||x — x'||; = Z x; — o)
. _ =1 p=1
e Minkowski
d y
dist(x, %) = [[x = X[, = (D _(l=s — i) "", p=1
i=1
p =
dist(x,x") = [[x — x'[|oc = ,_tnax d(\l‘i — ;) Chebyshev Distance
S LUMS o
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k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

Properties of Distance Metrics:

Non-negative, dist(x,x’) > 0
Symmetric, dist(x,x’) = dist(x’, x)
dist(x,x') =0 <— x =%

Triangular inequality, dist(x,x’) < dist(x’, x”) + dist(x”, x)

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Distance Metric:

e For categorical vaiable, use Hamming Distance

d
dist(x, x") 21—5:1: —x!

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Cosine Distance

e Cosine distance, though does not satisty the properties we defined for
distance metric, is however used to meaasure the angular distance between
the vectors.

e It follows from the standard definition of inner (dot) product between the
vectors, that is,

x'x" = ||x||2]|x||2 cos @
or -
cos ) = = X,
1x|[2[|x"||2

What is the range of values of angular distance
‘LUMS and what is the interpretation of these values?
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k-Nearest Neighbor (kNN) Algorithm

Practical issues in computing distance:

- Mismatch in the values of data
- Issue: Distance metric is mapping from d-dimensional
space to a scaler. The values should be of the same order

along each dimension.

- Solution: Data Normalization

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm
Choice of k:

- k=1
Sensitive to noise
High variance

Increasing k makes algorithm less sensitive to noise

- k=n

Decreasing k enables capturing finer structure of space

ldea: Pick k not too large, but not too small (depends on data)
How?

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Choice of k:

- Learn the best hyper-parameter, k using the data.
- Split data into training and validation.

- Start from k=1 and keep iterating by carrying out (5 or 10, for example)
cross-validation and computing the loss on the validation data using the
training data.

- Choose the value for k that minimizes validation (oss.

- This is the only learning required for kNN.

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Error Convergence:

We wish to analyze the error rate of the kNN classifier.

We will show that the error of 1-NN classifer converges as number of points in
D increases.

To show the convergence, we will derive that 1-NN classifier is only a factor 2
worse than the best possible classifier.

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Learning Problem

We represent the entire training data as

D = {(Xlayl)a (X2ay2)a I (Xnayn)} C X x Y

Recall a problem in hand. We want to develop a model that can predict the
label for the input for which label is unknown using kINN.

We assume that the data points (xj, y;) are drawn from some‘ (unknown)‘distri—
bution P(X,Y).

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Bayes Optimal Classifier

If we assume that we know P(y|x), we can predict the most likely label as
follows:

y* = h(x) = myax P(y|x)

Error Rate:

Probability of misclassification or error rate can be computed as

€Bayes Classifier — 1 — P(h(X)‘X) =1- P(y*|X)

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Error Convergence:

We want to determine 1-NN classification error as n — oo.

For a test-point x, we assume 1-NN classifier assigns label of xyxn to X.

We can easily show that (consequence of filling of space)

lim dist(x,xnNn) — 0

n—oo

Error Rate:

We want to determine probability of misclassification, that is, the probability
of having different labels of x and x .

LUMS Reference: Cover, Thomas, and, Hart, Peter. Nearest neighbor pattern

A Not-for-Profit University classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27




k-Nearest Neighbor (kNN) Algorithm

Error Convergence:

Probability that vy is the correct label of x but x5 has a different label:

P(y’X)(l - P(y\XNN))

Probability that y is the incorrect label of x but xyxxn has y label:

P(ylxnn) (1 — P(y|x))

Error Rate:

Probability of misclassification or error rate can be computed using the law of
total probability

enn = P(ylxnn)(1— P(yx)) + P(ylx)(1 — P(y|xnn))

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

Error Convergence:

Bound on Error Rate:

eny = P(ylxnw) (1 — Pylx)) + P(yx) (1 — P(y|xnyn))

Using
lim diSt(X, XNN) —0=X > XNN
n—oo
We obtain
enn = 2P(y|x) (1 — P(y[x))
exn < 2(1 — P(y]x)) Noting P(y|x) <1
ENN < 2€Bayes Classifier
s LUM S 1-NN classifier is only a factor 2 worse than the best possible classifier.

A Not-for-Profit Uni
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k-Nearest Neighbor (kNN) Algorithm

Algorithm Computational and Storage Complexity:

Input/Output:

e We have a feature vector, x for which we want to predict label y.

e We have k and dist function.

Steps:
e We defined a set Sy of size k as

dist(x, x") > A dist(x,x"), V(x',y") € D\Sx
X’,jy,, E x

e (lassifier that gives us most frequent label of the data points in Sk

h(x) = mode({y" : (z",y") € Sx})
‘LUMS

A Not-for-Profit Uni




k-Nearest Neighbor (kNN) Algorithm

Algorithm:

Steps: Computational Complexity

1. Find distance between given test point and feature vector of every point in D.

Noting n number of data points we have and each feature vector x is d-dimensional. @, (dn)

2. Find k points in D closest to the given test point vector to form a set Sy.

Finding k-th smallest distance using median of medians method. O(?’L)
Finding k£ data-points in D with distance less than the k-th smallest distance O (n)
3. Find the most frequent label in the set S, and assign it to the test point. O(k)

Computational Complexity: (O(dn)

Space Complexity: O(dn)

LUMS

A Not-for-Profit University
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

- Refers to the problems or phenomena associated with classifying,
analyzing and organizing the data in high-dimensional spaces that
do not arise in low-dimensional settings.

- For high-dimensional datasets, the size of data space is huge.

- In other words, the size of the feature space grows exponentially
with the number of dimensions (d) of the data sets.

- To ensure the points stay close to each other, the size (n) of the
data set must also have exponential growth. That means, we need a
very large dataset to maintain the density of points in the high
dimensional space.

< LUMS

A Not-for-Profit Uni




k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

- For high-dimensional datasets, the size of data space is huge.

ZEQ"

For an exponentially large number
of cells, we need an exponentially | A
l[arge amount of training data to :
ensure that the cells are not R
empty. ("

7, . Iq

a2 LUMS

A Not-for-Profit Uni



k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

Consider a ball of radius r defined as

B(r) = {|x[l2 < r|x € R"}

Volume of a ball of radius r

V(d) = Kpr”

Fraction of a volume between the balls of radius 1

and radius 1 — €
V(1)=V(1—¢)

V(1)

=1-(1-¢"

e LUMS
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

e LUMS
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

1o NN
© SHCL — (1 - 0.19 0.65 0.995 1.000 1.000
the inner ball: (1 — ¢)? 09 081 035 0005 0.000 0.000

For D = 50, 5 out of 1000 data-points would be inside the inner ball.

For D = 400, (1 —¢)? = 4.9774e — 19; almost all points lie on the surface of the
ball.

If you take a test point on the origin and D = 400, (almost) every point is at
the same (Euclidean) distance from the origin.

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality (Another viewpoint):

Calculate Probabilities that a uniformly distributed point is inside

e = 0.01

Ml o-1| 2 | 10 | s0 | a0 | 784
the shell: I—(1-¢ 001 0.02 0096 0395 0982 0.999
the inner ball: (1 — ¢)? 099 098 0904 0.605 0018 0.0004

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality:

Connection with kNN:

- With the increase in the number of features or number of dimensions
of the feature space, data-points are never near to one another.

- kNN algorithm carries out predictions about the test point assuming
we have data-points near to the test point that are similar to the test
point.

- As we do not have neighbors in the high dimensional space, kNN
becomes vulnerable and sensitive to the Curse of Dimensionality.

a2 LUMS
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k-Nearest Neighbor (kNN) Algorithm

The Curse of Dimensionality: Why does kNN work?

Two related explanations;

- Real-world data in the higher dimensional space is confined to a region
with effective lower dimensionality.
- Dimensionality Reduction (to be covered next)

- Real-world data exhibits smoothness that enables us to make
predictions exploiting interpolation techniques.

-~ For example,
- Data along a line or a plane in higher dimensional space
- detection of orientation of object in an image; data lies on effectively
1 dimensional manifold in probably Lmillion dimensional space.
- Face recognition in an image (50 or 71 features).

- Spam filter
‘LUMS
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k-Nearest Neighbor (kNN) Algorithm

Reference:

Overall:
 https://www.cs.cornell.edu/courses/cs4780/2018fa/

* (CB:secl.l
e HTF:13.3uptoendofl3.3.2

* The curse of dimensionality
 (CB:14
e KM:1.4.3
* N. Kouiroukidis and G. Evangelidis, "The Effects of Dimensionality Curse in High Dimensional kNN
Search," 2011 15th Panhellenic Conference on Informatics, Kastonia, 2011, pp. 41-45, doi:
10.1109/PCl.2011.45.
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