

Machine Learning

Regression, Linear, Polynomial, and Regularization

School of Science and Engineering

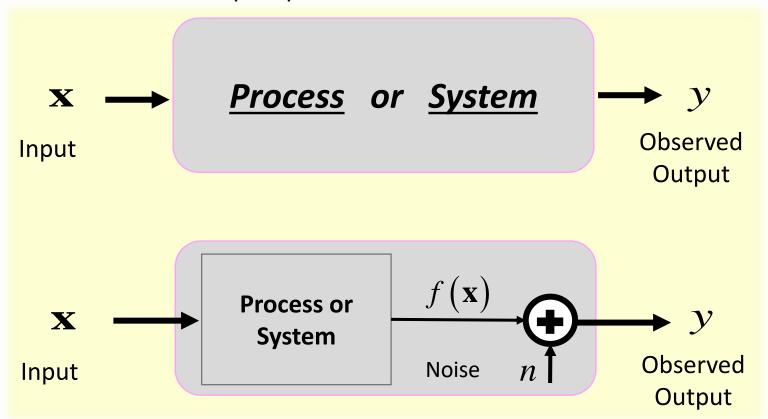
https://www.zubairkhalid.org/ee514 2025.html

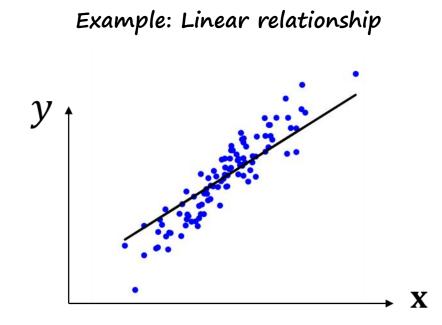
Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

Regression: Quantitative Prediction on a continuous scale

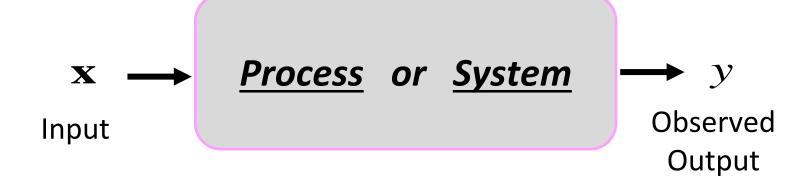
- Given a data sample, predict a numerical value





Here, PROCESS or SYSTEM refers to any underlying physical or logical phenomenon which maps our input data to our observed and noisy output data.

Overview:



One variable regression: y is a scalar

Multi-variable regression: y is a vector

Single feature regression: x is a scalar

Multiple feature regression: \mathbf{x} is a vector

We will cover

Examples:

Single Feature:

- Predict score in the course given the number of hours of effort per week.
- Establish the relationship between the monthly e-commerce sales and the advertising costs.

Multiple Feature:

- Studying operational efficiency of machine given sensors (temperature, vibration) data.
- Predicting remaining useful life (RUL) of the battery from charging and discharging information.
- Estimate sales volume given population demographics, GDP indicators, climate data, etc.
- Predict crop yield using remote sensing (satellite images, gravity information).
- Dynamic Pricing or Surge Pricing by ride sharing applications (Careem).
- Rate the condition (fatigue or distraction) of the driver given the video.
- Rate the quality of driving given the data from sensors installed on car or driving patterns.

Model Formulation and Setup:

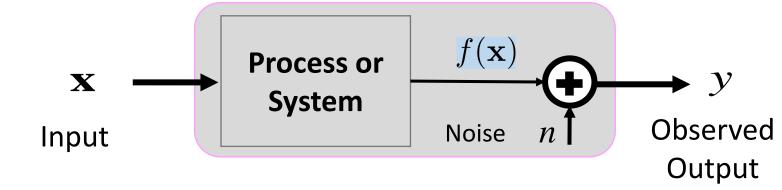
True Model:

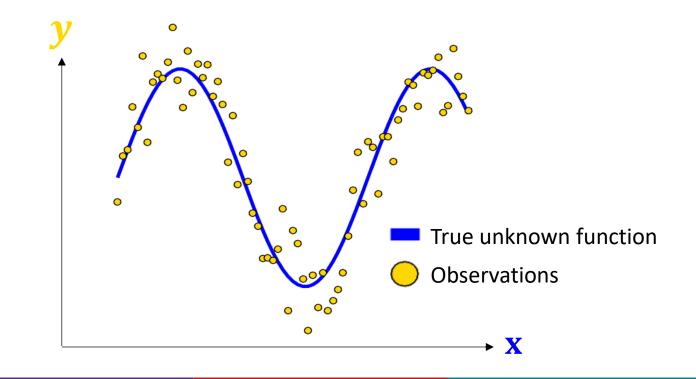
We assume there is an inherent but unknown relationship between input and output.

$$y = f(x) + n$$

Goal:

Given noisy observations, we need to estimate the unknown functional relationship as accurately as possible.

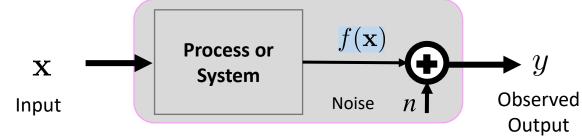


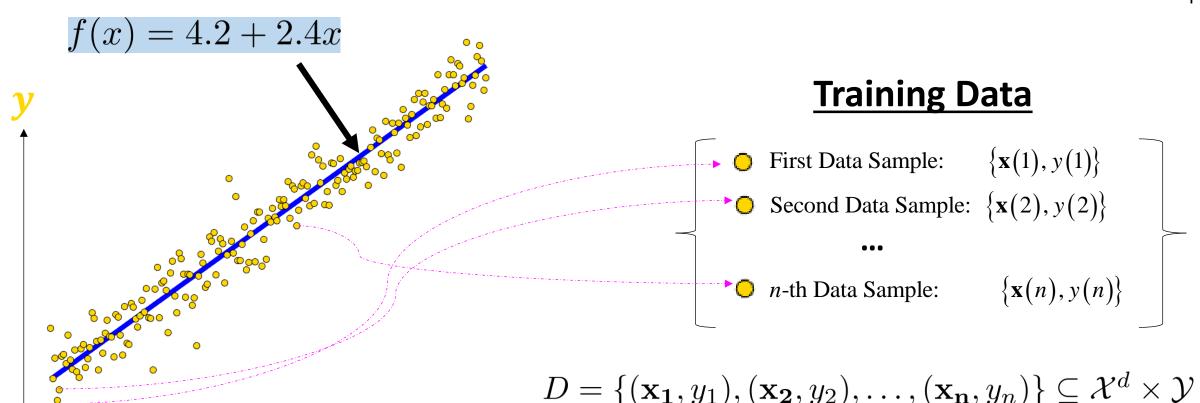


Model Formulation and Setup:

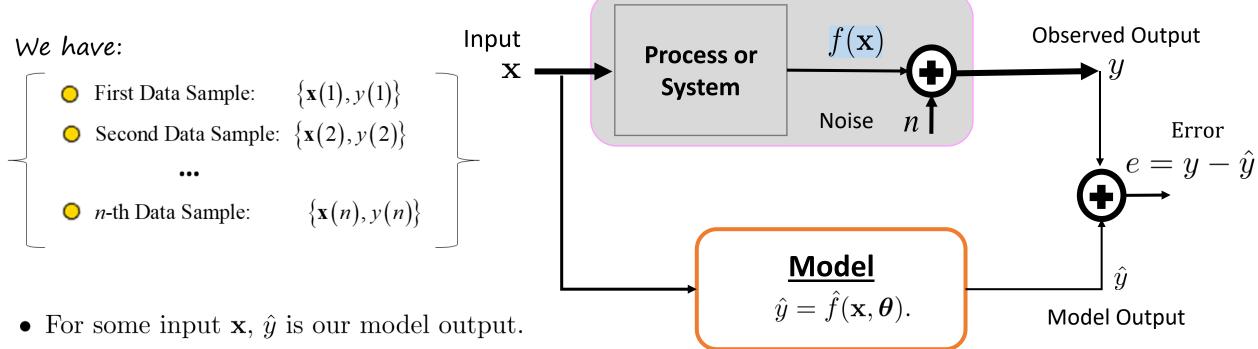
- Single Feature Regression, Example:

A Not-for-Profit University





Model Formulation and Setup:



- Assume that our model is $\hat{f}(\mathbf{x}, \boldsymbol{\theta})$, characterized by the parameter(s) $\boldsymbol{\theta}$.
- Model $f(\mathbf{x}, \boldsymbol{\theta})$ has
 - A structure (e.g., linear, polynomial, inverse).
 - Paramaters in the vector $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_M]$.
- Our model error is $e = y \hat{y}$.

Overview:

- Second learning algorithm of the course
- Scalar output is a linear function of the inputs
- Different from KNN: Linear regression adopts a modular approach which we will use most of the times in the course.
 - Select a model
 - Defining a loss function
 - Formulate an optimization problem to find the model parameters such that a loss function is minimized.
 - Employ different techniques to solve optimization problem or minimize loss function.

Model:

What is Linear?

We have $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$

•
$$d = 1$$
 $\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$

Interpretation:

Line.

$$\bullet$$
 $d=2$

•
$$d=2$$
 $\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$

Plane.

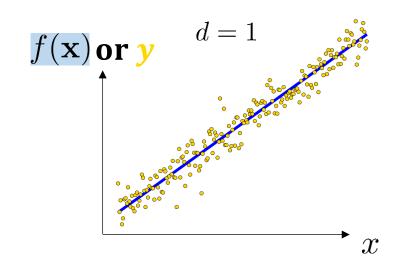
$$\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

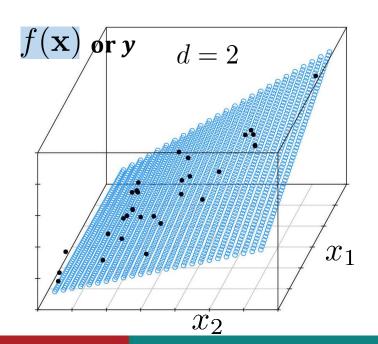
Hyper-plane in \mathbf{R}^{d+1}

For different θ_0 and $\boldsymbol{\theta}$, we have different hyper-planes.

How do we find the 'best' line?

What do we mean by 'best'?





Model:

We have
$$D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$$

Model is a linear function of the features, that is,

$$\hat{f}(\mathbf{x}, \boldsymbol{\theta}) = \theta_0 + \sum_{i=1}^d \theta_i x_i = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

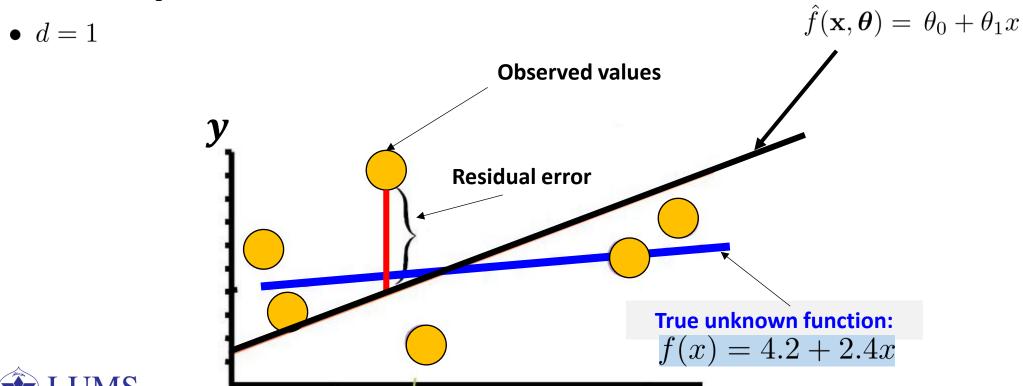
- Linear structure.
- Model Paramaters: θ_0 and $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_d]$.
 - θ_0 is bias or intercept.
 - $\theta = [\theta_1, \theta_2, \dots, \theta_d]$ represents the weights or slope.
 - θ_i quantifies the contribution of *i*-th feature x_i .

X

Define Loss Function:

A Not-for-Profit University

- Loss function should be a function of model parameters.
- For input \mathbf{x} , our model error is $e = y \hat{y} = y \hat{f}(\mathbf{x}, \boldsymbol{\theta}) = y \theta_0 \boldsymbol{\theta}^T \mathbf{x}$.
- \bullet e is also termed as residual error as it is the difference between observed value and predicted value.



Define Loss Function:

• For $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$, we have

$$e_i = y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i}, \quad i = 1, 2, \dots, n$$

• Using residual error, we can define different loss functions:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2$$
 Least-squared error (LSE)

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2$$
 Mean-squared error (MSE)

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2}$$

Root Mean-squared error (RMSE)

One minimizer for all loss functions.

Define Loss Function:

• We minimize the following loss function:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2$$

• We have an **optimization problem**: find the parameters which minimize the loss function. We write optimization problem (with no constraints) as

$$\underset{\theta_0, \boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2$$

Factor $\frac{1}{2}$ is added to make the formulation mathematically more convenient.

How to solve?

- Analytically: Determine a critical point that makes the derivtive (if it exists) equal to zero.
- Numerically: Solve optimization using some algorithm that iteratively takes us closer to the critical point minimizing objective function.

Define Loss Function:

Reformulation:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \boldsymbol{\theta}^T \mathbf{x_i})^2 = \frac{1}{2} \mathbf{e}^T \mathbf{e}$$

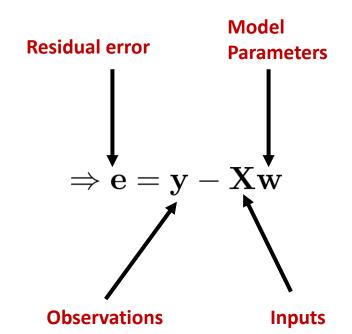
Here $\mathbf{e} = [e_1, e_2, \dots, e_n]^T$ (column vector) where

$$e_i = y_i - \theta_0 - \mathbf{x_i}^T \boldsymbol{\theta}, \quad i = 1, 2, \dots, n$$

$$\begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \theta_0 \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{x_1}^T \\ \mathbf{x_2}^T \\ \vdots \\ \mathbf{x_n}^T \end{bmatrix} \boldsymbol{\theta} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} 1 & \mathbf{x_1}^T \\ 1 & \mathbf{x_2}^T \\ \vdots \\ 1 & \mathbf{x_n}^T \end{bmatrix} \begin{bmatrix} \theta_0 \\ \boldsymbol{\theta} \end{bmatrix} \Rightarrow \mathbf{e} = \mathbf{y} - \mathbf{X} \mathbf{w}$$

Consequently:

$$\mathcal{L}(\theta_0, \boldsymbol{\theta}) = \mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$
$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} ||(\mathbf{y} - \mathbf{X} \mathbf{w})||_2^2$$



Solve Optimization Problem: (Analytical Solution employing Calculus)

$$\underset{\mathbf{w}}{\text{minimize}} \quad \mathcal{L}(\mathbf{w}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\mathbf{w})\|_2^2$$

- Very beautiful, elegant function we have here!

We first write the loss function as

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w})$$

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w})$$

• To further solve this, let us quickly talk about the concept of a gradient of a function.

Solve Optimization Problem: (Analytical Solution employing Calculus)

Gradient of a function: Overview

• For a function $f(\mathbf{x})$ that maps $\mathbf{x} \in \mathbf{R}^d$ to \mathbf{R} , we define a gradient (directional derivative) with respect to \mathbf{x} as

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]^T \in \mathbf{R}^d$$

• Interpretation: Quantifies the rate of change along different directions.

Examples:

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = \mathbf{x}^T \mathbf{a}$$

$$\nabla f(\mathbf{x}) = \mathbf{a}$$

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$$

$$\nabla f(\mathbf{x}) = 2\mathbf{x}$$

•
$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x}$$

 $\nabla f(\mathbf{x}) = 2 \mathbf{P} \mathbf{x}$

Solve Optimization Problem: (Analytical Solution employing Calculus)

We have a loss function:

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} (\mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w})$$

• Take gradient with respect to w as

$$\nabla \mathcal{L}(\mathbf{w}) = \frac{1}{2} \left(-2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \mathbf{w} \right)$$

• Substituting it equal to zero yields

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

$$\Rightarrow \mathbf{w} = \left(\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{y}$$

- We have determined the weights for which LSE, MSE, RMSE or the norm of the residual is minimized.
- This solution is referred to as least-squared solution as it minimizes the squared error.

Example – Formulation:

Problem Description:

You are tasked with predicting a person's **hours of exercise per week** based on their health and lifestyle factors. Initially, you will use **one input feature** (the person's age). Later, you will extend the problem by incorporating an additional feature, the **average hours of sleep per night**.

Step 1: Linear Regression with One Input Feature (Age)

1.1 Problem Definition

A fitness tracker company collects data on people's weekly exercise habits and wants to predict the number of hours of exercise per week based on the person's age.

- Input variable x_1 : Age of the person (in years).
- Output variable y: Hours of exercise per week.

Example – Formulation:

Model:

The linear regression model with one input feature can be written as:

$$y = w_0 \cdot 1 + w_1 x_1$$

Where:

- w_0 is the bias term (intercept).
- w_1 is the weight (coefficient) for x_1 (age).
- y is the predicted hours of exercise per week.

Matrix Form: Y = XW

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{11} \\ 1 & x_{21} \\ \vdots & \vdots \\ 1 & x_{n1} \end{bmatrix} \qquad W = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

Example – Formulation:

Problem Description:

1.3 Matrix Formulation

We can represent this linear regression problem in matrix form. Suppose we have n data points. The equation becomes:

$$Y = XW$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{11} \\ 1 & x_{21} \\ \vdots & \vdots \\ 1 & x_{n1} \end{bmatrix}$$

$$W = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

Example – Formulation:

Data:

Consider the following 4 data points representing different individuals:

Age (years)	Hours of Exercise (per week)
25	4
30	5
40	3
50	2

The input matrix X and output vector Y are:

$$X = \begin{bmatrix} 1 & 25 \\ 1 & 30 \\ 1 & 40 \\ 1 & 50 \end{bmatrix}, \quad Y = \begin{bmatrix} 4 \\ 5 \\ 3 \\ 2 \end{bmatrix}$$

You can now compute the weights w_0 and w_1 using the normal equation:

$$W = (X^T X)^{-1} X^T Y$$

Example – Formulation:

Problem Description:

Step 2: Linear Regression with Two Input Features (Age and Sleep Duration)

2.1 Extended Problem Definition

In addition to age, the company now wants to include the average hours of sleep per night as a factor in predicting weekly exercise habits.

- Input variable x_1 : Age of the person (in years).
- Input variable x_2 : Average hours of sleep per night.
- Output variable y: Hours of exercise per week.

Example – Formulation:

Model: The linear regression model with two input features can be written as:

$$y = w_0 \cdot 1 + w_1 x_1 + w_2 x_2$$

Where:

- w_0 is the bias term (intercept).
- w_1 is the weight for x_1 (age).
- w_2 is the weight for x_2 (hours of sleep).
- y is the predicted hours of exercise per week.

Matrix Form: Y = XW

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{bmatrix} \qquad W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

Example – Formulation:

Data:

Let's extend the data to include both **age** and **hours of sleep**:

Age (years)	Sleep (hours per night)	Hours of Exercise (per week)
25	7	4
30	6	5
40	6	3
50	5	2

The input matrix X and output vector Y are:

$$X = \begin{bmatrix} 1 & 25 & 7 \\ 1 & 30 & 6 \\ 1 & 40 & 6 \\ 1 & 50 & 5 \end{bmatrix}, \quad Y = \begin{bmatrix} 4 \\ 5 \\ 3 \\ 2 \end{bmatrix}$$

You can now compute the weights w_0 , w_1 , and w_2 using the normal equation:

$$W = (X^T X)^{-1} X^T Y$$

So far and moving forward:

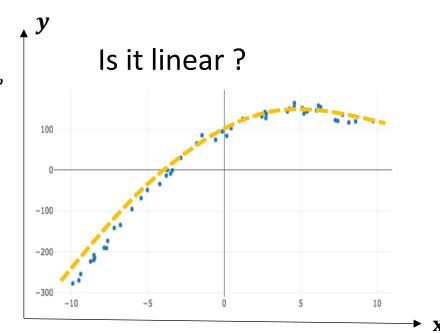
- We assumed that we know the structure of the model, that is, there is a linear relationship between inputs and output.
- Number of parameters = dimension of the feature space + 1 (bias parameter)
- Formulated loss function using residual error.
- Formulated optimization problem and obtain analytical solution.
- Linear regression is one of the models for which we can obtain an analytical solution.
- We will shortly learn an algorithm to solve optimization problem numerically.

Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

Overview:

- If the relationship between the inputs and output is not linear, we can use a polynomial to model the relationship.
- We will formulate the polynomial regression model for single feature regression problem.
- Polynomial Regression is often termed as Non-linear
 Regression or Linear in Parameter Regression.
- We will also revisit the concept of 'over-fitting'.



Single Feature Regression:

Formulation:

- d = 1, input x is a scalar.
- Model is a polynomial function of the input, that is,

$$\hat{f}(x,\boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_M x^M = \sum_{i=0}^M \theta_i x^i$$

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

- M is the degree of plynomial; characterized by M+1 coefficients $\theta_0, \theta_1, \ldots, \theta_M$.
- M is the Hyper-Parameter of the model and determines the complexity of the model. For M=1, we have a linear regression.
- \bullet We can use linear regression to find these coefficients by formulating the input x and its powers using a vector-valued function given by

$$\mathbf{g}(x) = [1, x, x^2, \cdots, x^M]^T$$

Single Feature Regression:

Formulation:

• With this notation, we can formulate model as $\hat{f}(x, \theta) = g(x)^T \theta$

$$\hat{f}(x, \boldsymbol{\theta}) = \boldsymbol{g}(x)^T \boldsymbol{\theta}$$

- Note that the model is linear in terms of parameters due to which Polynomial Regression is termed as Linear in Parameter Regression.
- Note that g(x) can be any function of x. For example, we can have $g(x) = \left| \frac{1}{x}, \sin(2\pi x), x^2, e^x \dots \right|^T$
- \bullet For n data points (input, output), we can define residual error in a similar way we computed for linear regression as follows:

$$\begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^M \\ 1 & x_2 & x_2^2 & \dots & x_2^M \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^M \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_M \end{bmatrix} \Rightarrow \mathbf{e} = \mathbf{y} - \mathbf{X}\boldsymbol{\theta}$$

$$\boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
We have seen this before.

**We are capable to solve this!

Single Feature Regression:

Example (Ref: CB. Section 1.1):

- Model is a polynomial function of degree M.
- If M is not knwown, how do we choose it?

Process

$$f(x) = \sin(2\pi x)$$

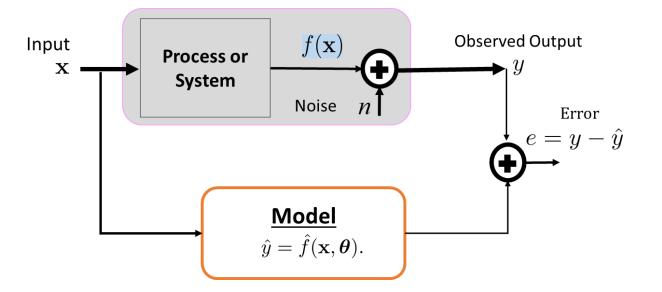
Observations

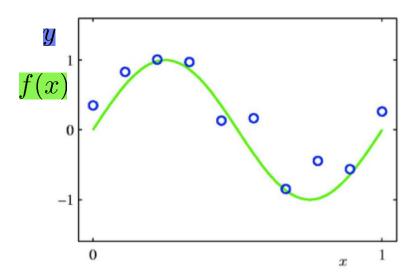
$$y = f(x) + n$$

Model

$$\hat{f}(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_i x^M$$

• We take n = 10.

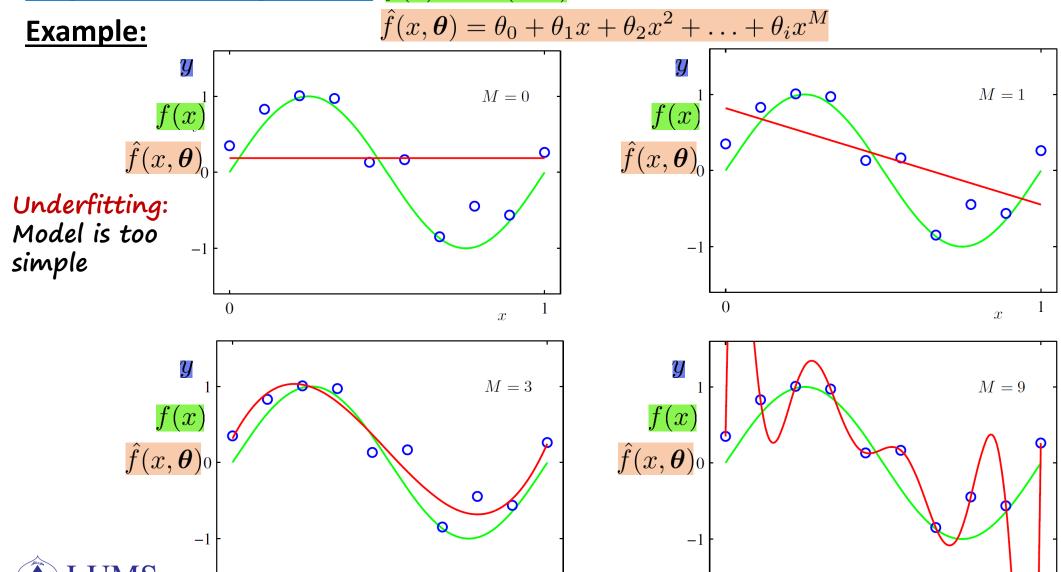




Single Feature Regression: $f(x) = \sin(2\pi x)$

0

A Not-for-Profit University



Overfitting: Model is too complex

 $E_{
m RMS}$

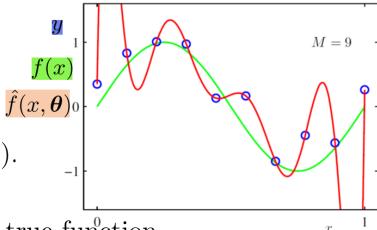
Single Feature Regression:

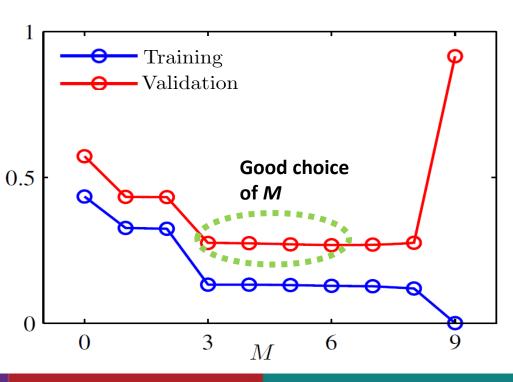
Example:

- What's happening with the increase in M? Overfitting
 - Model is fitting to the data, not the actual true function.
 - For M=9, we have zero residual error, that is, $y=\hat{f}(x,\boldsymbol{\theta})$.
 - Is this a good solution?
 - No! The model is oscillating wildly and is not close to the true function.
- In this toy example, we had informtion about the true function and therefore we can conclude that M = 9, is not a good model to fit the data.
- How to choose model order M or How do we tell if a model is overfitting when we do not have knowledge about the true process/function?

Solution 1:

• Recall: Train-Validation Split. Overfitting causes poor generalization performance, that is, large error on the testing or validation data.





Single Feature Regression:

Example:

- Let's pose another question!
- M=3 degree polynomial is a special case of M=9 degree polynomial.
 - Why M = 9 gives us poor performance?
- Coefficients magnitude increases with M.
- M = 3 solution cannot be recovered from M = 9 solution by setting the remaining weights equal to zero.
- 10 coefficients are tuned for 10 data-points when M = 9.

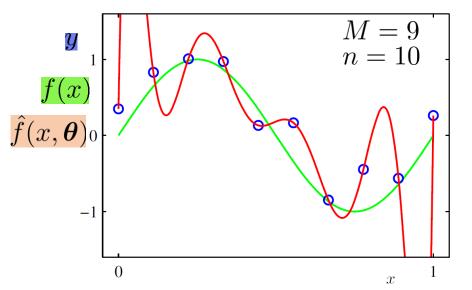
			M=0,	M=1,	M=3	M=9
		$\lceil \theta_0 \rceil$	0.19	0.82	0.31	0.35
		$\mid \theta_1 \mid$		-1.27	7.99	232.37
		θ_2			-25.43	-5321.83
		θ_3			17.37	48568.31
		$\mid heta_4 \mid$				-231639.30
	0 —	θ_5				640042.26
		θ_6				-1061800.52
		$\mid heta_7 \mid$				1042400.18
		θ_8				-557682.99
		$\lfloor heta_9 floor$				125201.43

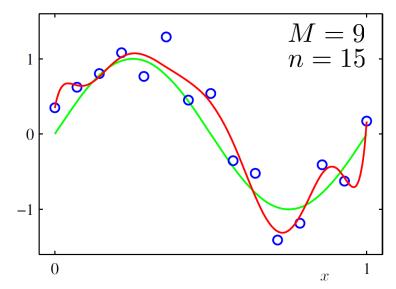
Single Feature Regression:

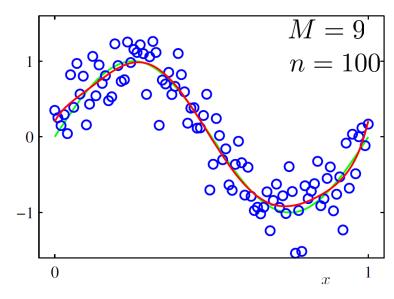
How to Handle Overfitting?

- The polynomial degree M is the hyper-parameter of our model, like we had k in kNN, and controls the complexity of the model.
- If we stick with M=3 model, this is the restriction on the number of parameters.
- We encounter overfitting for M=9 because we do not have sufficient data.

Solution 2: Take more data points to avoid over-fitting.







Outline

- Regression Set-up
- Linear Regression
- Polynomial Regression
- Underfitting/Overfitting
- Regularization

Regularization overview:

- The concept is broad but we will see in the context of linear regression or polynomial regression which we formulated as linear regression.
- Encourages the model coefficients to be small by adding a penalty term to the error.
- We had the loss function of the following form that we minimize to find the coefficients:

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \|_2^2$$

See linear regression formulation.

- We add a 'penalty term', known as regularizer, in the loss function as

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{reg}}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda \mathcal{R}(\boldsymbol{\theta})$$
 Regularized Loss function

• $\lambda \geq 0$ maintains the trade-off between regularizer and the original loss function as it controls the relative importance of the regularization term.

L² Least-squares Regularization – Ridge Regression:

- Since we require to discourage the model coefficients from reaching large values; we can use the following simple regularizer:

$$\mathcal{R}(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|_2^2$$
 Known as L^2 or ℓ^2 penalty

- For this choice, regularized loss function becomes

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

- This regularization term maintains a trade-off between 'fit of the model to the data'
 and 'square of norm of the coefficients'.
 - If model is fitted poorly, the first term is large.
 - If coefficients have high values, the second term (penalty term) is large.
 - Large λ penalizes coefficient values more.

Intuitive Interpretation: We want to minimize the error while keeping the norm of the coefficients bounded.

L² Least-squares Regularization – Ridge Regression:

Regularized loss function is still quadratic, and we can find closed form solution.

We have a loss function:
$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

Take gradient with respect to θ as

$$\nabla \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \left(-2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + 2\lambda \boldsymbol{\theta} \right)$$

• Substituting it equal to zero yields

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y} \Rightarrow (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y}$$

 $\Rightarrow \boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

• We have a solution of the ridge regression:

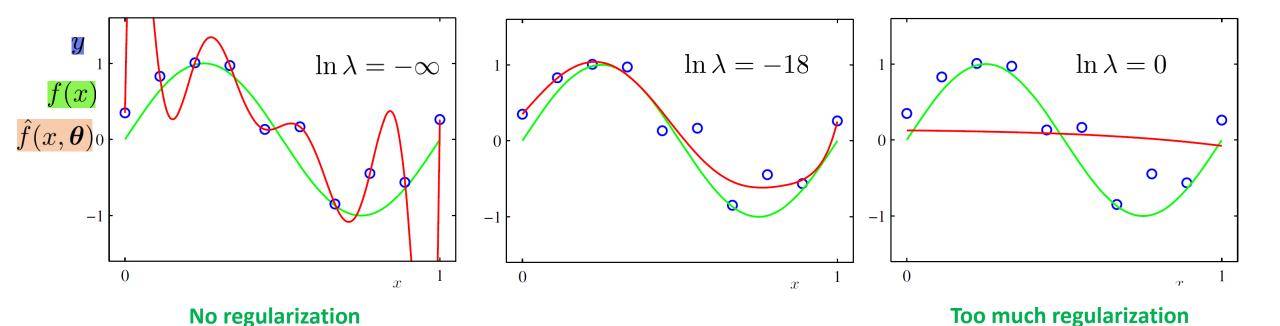
$$oldsymbol{ heta}(\lambda) = \left(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}
ight)^{-1}\mathbf{X}^T\mathbf{y}$$

- $\lambda = 0$, we have non-regularized solution.
- $\lambda = \infty$, the solution is a zero vector.

L² Least-squares Regularization – Ridge Regression:

Example: • Too small λ : no regularization.

- Too large λ : no weightage to the data.
- In practice, we use very small value of λ and therefore it is convenient to work with $\ln \lambda$ and compute it as $\lambda = e^{\ln \lambda}$.

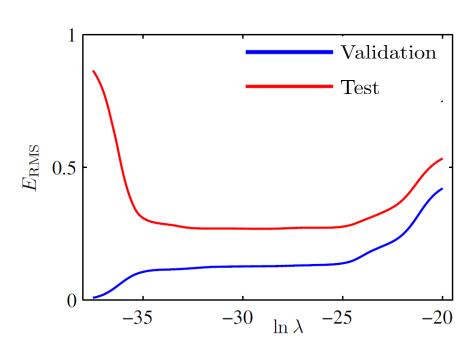


L² Least-squares Regularization – Ridge Regression:

Example:

• λ restricts the coefficients from exploding as we have included the square of the norm of the coefficients in the loss function being minimized.

		$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
	$\lceil \theta_0 \rceil$	0.35	0.35	0.13
	$\mid \stackrel{\circ}{\theta_1} \mid$	232.37	4.74	-0.05
	$ \theta_2 $	-5321.83	-0.77	-0.06
	$\left \stackrel{-}{\theta_3} \right $	48568.31	-31.97	-0.05
$\theta =$	$\mid \theta_4 \mid$	-231639.30	-3.89	-0.03
$\sigma =$	θ_5	640042.26	55.28	-0.02
	$ \theta_6 $	-1061800.52	41.32	-0.01
	$ \theta_7 $	1042400.18	-45.95	-0.00
	θ_8	-557682.99	-91.53	0.00
	θ_9	125201.43	72.68	0.01



 \bullet λ is a hypermater of the model and we learn it in practice using the validation data.

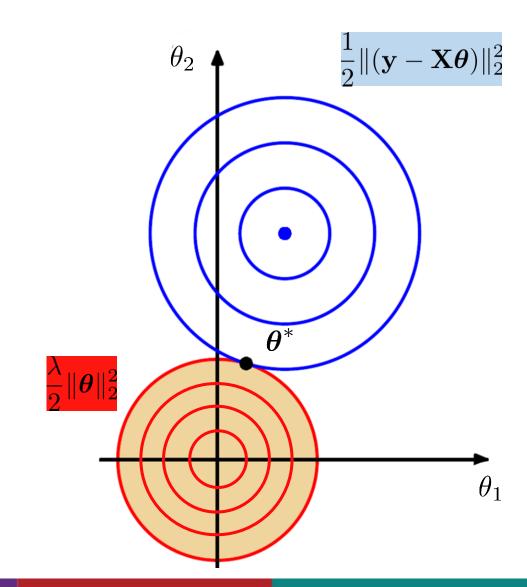
L² Least-squares Regularization – Ridge Regression:

Graphical Visualization:

 $\boldsymbol{\theta} = [\theta_1, \theta_2]$, we assume we have two coefficients: θ_1 and θ_2 .

We have a loss function: $\mathcal{L}_{reg}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$

- Good value of λ helps us in avoiding overfitting.
- Irrelevant features get small but non-zero value in the regularized solution.
- Ideally, we would like to assign zero weight to the irrelevant features.



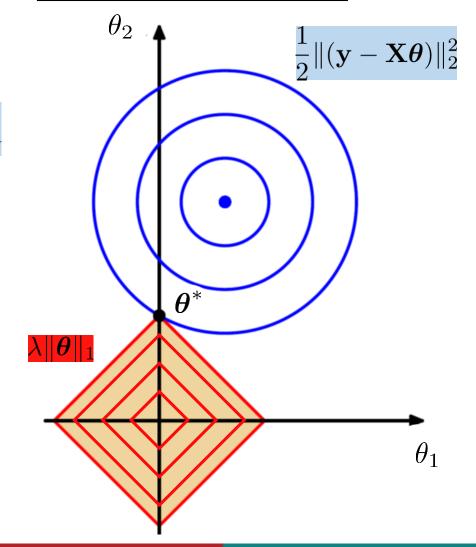
L¹ Least-squares Regularization – Lasso Regression

- Use L^1 or ℓ^1 penalty instead, that is, $\mathcal{R}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1 = \sum_i |x_i|$
- For this choice, regularized loss function becomes

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$$

- This regularization is referred to as least absolute shrinkage and selection operator (Lasso).
- The intersection is at the corners of the diamond.
 - Lasso regression gives us sparse solution.

Graphical Visualization:



Elastic Net Regression, L¹ vs L²

A Not-for-Profit University

- Ridge: Error + λ times (sum of squares of coefficients)
- Lasso: Error + λ times (sum of absolute values of the coefficients)
- Lasso optimization: computationally expensive than ridge regression.
- Due to the corners included in the solution, regularized solution will have some weights qual to zero.
 - Solution is sparse in general, and is therefore biased.
- Elastic Net Regression: Hybrid version; both L_1 and L_2 penalties.

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \quad \mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = \frac{1}{2} \|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_2^2 + \lambda_1 \|\boldsymbol{\theta}\|_1 + \frac{\lambda_2}{2} \|\boldsymbol{\theta}\|_2^2$$

- Ridge and Lasso are special cases of elastic net regression.
- Combines the strength of both but require tuning of hyperparameters λ_1 and λ_2 using validation data.