LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE 514 (CS 535) Machine Learning – Spring 2025 Quiz 4

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 15 minutes	

Question 1 (8 marks)

We consider a dataset with two features: study hours (x_1) and sleep hours (x_2) , with the corresponding exam scores (y).

Study Hours (x_1)	Sleep Hours (x_2)	Exam Score (y)
5.0	10	75
6.0	12	78
6.5	13	85
7.0	14	88

(a) [1 mark] Write a linear model for predicting y using both features.

Solution: The linear model for predicting the exam score y using both study hours (x_1) and sleep hours (x_2) is:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2.$$

Here θ_0 is the intercept (bias term), θ_1 is the coefficient for study hours (x_1) , and θ_2 is the coefficient for sleep hours (x_2) .

(b) [2 marks] Formulate the matrix equation $Y = X\theta$, clearly defining Y, X, and θ .

Solution: The matrix equation $Y = X\theta$ is formulated as follows:

$$Y = \begin{bmatrix} 75 \\ 78 \\ 85 \\ 88 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 5.0 & 10 \\ 1 & 6.0 & 12 \\ 1 & 6.5 & 13 \\ 1 & 7.0 & 14 \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Here Y is the vector of exam scores, X is the design matrix with a column of 1's (for the intercept) and the features x_1 and x_2 , and θ is the vector of parameters to be estimated.

(c) [1 mark] Write the least-squares objective function for estimating θ .

Solution: The least-squares objective function for estimating θ is:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - (\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)}) \right)^2$$

In matrix form, this can be written as:

$$L(\theta) = \frac{1}{2}(Y - X\theta)^{T}(Y - X\theta)$$

The goal is to minimize $L(\theta)$ with respect to θ .

(d) [4 marks] Now consider using only one feature (study hours, x_1). Rewrite the model and find the two parameters of the model.

Solution: If we use only the study hours (x_1) as the feature, the linear model becomes:

$$y = \theta_0 + \theta_1 x_1$$

For this simplified model, the matrices are:

$$Y = \begin{bmatrix} 75 \\ 78 \\ 85 \\ 88 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 5.0 \\ 1 & 6.0 \\ 1 & 6.5 \\ 1 & 7.0 \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

The least-squares solution is given by:

$$\theta = (X^T X)^{-1} X^T Y$$

$$X^T X == \begin{bmatrix} 4 & 24.5 \\ 24.5 & 152.25 \end{bmatrix}$$

$$X^T Y == \begin{bmatrix} 326 \\ 2011.5 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T Y == \begin{bmatrix} 40.2 \\ 6.67 \end{bmatrix}$$

Thus, the linear model using only study hours is:

$$y = 40.2 + 6.67x_1$$

Question 2 (2 marks)

- 1. How does high bias affect the performance of a machine-learning model?
 - a) It leads to poor performance on the training data but an excellent generalization.
 - b) It results in the model failing to capture the patterns in the data, causing poor performance on both training and test sets.
 - c) It increases the variance of the model, making it sensitive to small changes in data.
 - d) It reduces the number of parameters in the model, improving flexibility.
- 2. Which approach can help reduce high variance in a model?
 - a) Increasing the model complexity
 - b) Decreasing the amount of training data
 - c) Applying regularization techniques like L1 or L2
 - d) Reducing the number of features used for training