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Abstract—We propose a transform for signals defined on the
sphere that reveals their localized directional content in the
spatio-spectral domain when used in conjunction with an asym-
metric window function. We call this transform the directional
spatially localized spherical harmonic transform (directional
SLSHT) which extends the SLSHT from the literature whose
usefulness is limited to symmetric windows. We present an
inversion relation to synthesize the original signal from its di-
rectional-SLSHT distribution for an arbitrary window function.
As an example of an asymmetric window, the most concentrated
band-limited eigenfunction in an elliptical region on the sphere
is proposed for directional spatio-spectral analysis and its ef-
fectiveness is illustrated on the synthetic and Mars topographic
data-sets. Finally, since such typical data-sets on the sphere are
of considerable size and the directional SLSHT is intrinsically
computationally demanding depending on the band-limits of the
signal and window, a fast algorithm for the efficient computation
of the transform is developed. The floating point precision nu-
merical accuracy of the fast algorithm is demonstrated and a full
numerical complexity analysis is presented.

Index Terms—Signal analysis, spherical harmonics, 2-sphere.

I. INTRODUCTION

S IGNALS that are inherently defined on the sphere appear in
various fields of science and engineering, such as medical

image analysis [1], geodesy [2], computer graphics [3], plan-
etary science [4], electromagnetic inverse problems [5], cos-
mology [6], 3D beamforming [7] andwireless channelmodeling
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[8]. In order to analyze and process signals on the sphere, many
signal processing techniques have been extended from the Eu-
clidean domain to the spherical domain [2], [9]–[23].
Due to the ability of wavelets to resolve localized signal con-

tent in both space and scale, wavelets have been extensively in-
vestigated for analyzing signals on the sphere [9], [13]–[15],
[19]–[23] and have been utilized in various applications (e.g.,
in astrophysics [24]–[29] and geophysics [4], [30], [31]). Some
of the wavelet techniques on the sphere also incorporate direc-
tional phenomena in the spatial-scale decomposition of a signal
(e.g., [21]–[23]). As an alternative to spatial-scale decomposi-
tion, spatio-spectral (spatial-spectral) techniques have also been
developed and applied for localized spectral analysis, spectral
estimation and spatially varying spectral filtering of signals [10],
[12], [18], [32], [33]. The spectral domain is formed through the
spherical harmonic transform which serves as a counterpart of
the Fourier transform for signals on the sphere [5], [34]–[36].
The localized spherical harmonic transform, composed of

spatial windowing followed by spherical harmonic transform,
was first devised in [18] for localized spectral analysis. We note
that the localized spherical harmonic transform was defined
in [18] for azimuthally asymmetric (i.e., directional) window
functions, however, it was applied and investigated for az-
imuthally symmetric functions only. Furthermore, a spectrally
truncated azimuthally symmetric window function was used for
spatial localization [18]. Due to spectral truncation, the window
used for spatial localization may not be concentrated in the
region of interest. This issue was resolved in [32], where az-
imuthally symmetric eigenfunctions obtained from the Slepian
concentration problem on the sphere were used as window
functions (the Slepian concentration problem is studied for arbi-
trary regions on the sphere in [2]). Following [18], the spatially
localized spherical harmonic transform (SLSHT) for signals on
the sphere has been devised in [10] to obtain the spatio-spectral
representation of signals for azimuthally symmetric window
functions, where the effect of different window functions on
the SLSHT distribution is studied. Subsequently, the SLSHT
has been used to perform spatially varying spectral filtering
[12], again with azimuthally symmetric window functions.
In obtaining the SLSHT distribution for spatio-spectral rep-

resentation of a signal, the use of an azimuthally symmetric
window function provides mathematical simplifications. How-
ever, such an approach cannot discriminate localized directional
features in the spatio-spectral domain. This motivates the use
of asymmetric window functions in the spatio-spectral transfor-
mation of a signal using the SLSHT. In order to serve this ob-
jective, we employ the definition of the localized spherical har-
monic transform in [18] and define the SLSHT and the SLSHT
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distributions using azimuthally asymmetric window functions
for spatial localization. Since the use of an asymmetric window
function enables the transform to reveal directional features in
the spatio-spectral domain, we call the proposed transform the
directional SLSHT. We also provide a harmonic analysis of the
proposed transform and present an inversion relation to recover
the signal from its directional SLSHT distribution.
Since the directional SLSHT distribution of a signal is re-

quired to be computed for each spatial position and for each
spectral component, and data-sets on the sphere are of consid-
erable size (e.g., three million samples on the sphere for cur-
rent data-sets [37] and fifty million samples for forthcoming
data-sets [38]), the evaluation of the directional SLSHT distri-
bution is computationally challenging. We develop fast algo-
rithms for this purpose. Through experimental results we show
the numerical accuracy and efficient computation of the pro-
posed directional SLSHT transform. Furthermore, due to the
fact that the proposed directional SLSHT distribution depends
on the window function used for spatial localization, we ana-
lyze the asymmetric band-limited window function with nom-
inal concentration in an elliptical region around the north pole,
which is obtained from the Slepian concentration problem on
the sphere. We also illustrate, through an example, the capa-
bility of the proposed directional SLSHT to reveal directional
features in the spatio-spectral domain.
The remainder of the paper is structured as follows. In

Section II, we review mathematical preliminaries related to
the signals on the sphere, which are required in the sequel. We
present the formulation of the directional SLSHT, its harmonic
analysis and signal reconstruction from the SLSHT distribution
in Section III. Different algorithms for the evaluation of the
SLSHT distribution are provided in Section IV. In Section V,
we show timing and accuracy results of our algorithms and an
illustration of the transform. Concluding remarks are presented
in Section VI.

II. MATHEMATICAL BACKGROUND

In order to clarify the adopted notation, we review some
mathematical background for signals defined on the sphere and
the rotation group.

A. Signals on the Sphere

In this work, we consider the square integrable com-
plex functions defined on unit sphere

, where denotes Euclidean norm,
is

a unit vector and parameterizes a point on the unit sphere with
denoting the colatitude and denoting the

longitude. The inner product of two functions and on is
defined as [39]

(1)

where denotes the complex conjugate,
and the integration is carried out over the unit sphere. With
the inner product in (1), the space of square integrable com-
plex valued functions on the sphere forms a complete Hilbert

space . Also, the inner product in (1) induces a norm
. We refer the functions with finite induced

norm as signals on the sphere.
The Hilbert space is separable and the spherical har-

monics form the archetype complete orthonormal set of basis
functions. The spherical harmonics, , for
degree and order are defined as [5], [36]

(2)

where denotes the normalization con-
stant and are the associated Legendre polynomials [36].
With the above definitions, the spherical harmonics form an or-
thonormal set of basis functions, i.e., they satisfy

, where is the Kronecker delta.
By completeness and orthonormality of the spherical har-

monics, we can expand any signal as

(3)

where

(4)

denotes the spherical harmonic coefficient of degree and order
. The signal is said to be band-limited with maximum spher-

ical harmonic degree if .

B. Rotations on the Sphere and Wigner- Functions

Rotations on the sphere are often parameterized using Euler
angles , where
and [36]. Using the ‘ ’ Euler convention, we
define the rotation operator , for ,
which rotates a function on a sphere in the sequence of rotation
around -axis, then rotation about -axis followed by a
rotation around -axis. The spherical harmonic coefficient of a
rotated signal is related to the coefficients of the original
signal by

(5)

where denotes the Wigner- function [36] of degree
and orders and and is given by

(6)

where is the Wigner- function [36].

C. Signals on the Rotation Group SO(3)

For and such that , the
Wigner- functions in (6) form a complete set of orthogonal
functions for the space of functions defined on the
rotation group SO(3) and follow the orthogonality relation

(7)



2194 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 9, MAY 1, 2013

where and the integral is a triple integral
over all rotations [36]. Thus, any function

may be expressed as

(8)

where

(9)

The signal is said to be band-limited with maximum degree
if .

D. Discretization of and SO(3)

In order to represent functions on and SO(3), it is neces-
sary to adopt appropriate tessellation schemes to discretize both
the unit sphere domain and the Euler angle domain of SO(3).We
consider tessellation schemes that support a sampling theorem
for band-limited functions, which is equivalent to supporting an
exact quadrature.
For the unit sphere domain, we adopt the equiangular tessel-

lation scheme [35] defined as
,

which is a grid of sample points on the
sphere (including repeated samples of the south pole) that keeps
the sampling in and independent. For a band-limited func-
tion on the sphere with maximum spherical har-
monic degree , the sampling on the grid ensures that
all information of the function is captured in the finite set of
samples and, moreover, that exact quadrature can be performed
[35]. Note that this sampling theorem was developed only re-
cently [35] and requires approximately half as many samples
on the sphere as required by alternative equiangular sampling
theorems on the sphere [34].
For the Euler angle representation of the rotation group

SO(3), we consider the equiangular tessellation scheme

. Again for
a function with maximum spectral degree ,
the sampling of a function on ensures that all information
of the function is captured and also permits exact quadrature
(which follows from the results developed on the sphere [35]).

III. DIRECTIONAL SLSHT

We describe in this section the directional SLSHT, which
is capable of revealing directional features of signals in the
spatio-spectral1 domain. For spatial localization, we consider
the band-limited azimuthally asymmetric window function
which is spatially concentrated in some asymmetric region
around the north pole. Since the rotation around the -axis does
not have any affect on an azimuthally symmetric function, the
localized spherical harmonic transform using an azimuthally
symmetric window function can be parameterized on the
sphere. However, if an azimuthally asymmetric window is used

1When we refer to spatio-spectral, we consider the SO(3) spatial domain,
instead of . This is due to the reason that we are considering all possible
rotations, parameterized using Euler angles which form the SO(3) domain.

to obtain localization in the spatial domain, the rotation of the
window function is fully parameterized with the consideration
of all three Euler angles . We refer to the spa-
tially localized transform using an asymmetric window as the
directional SLSHT. Here, we first define the directional SLSHT
distribution which presents the signal in the spatio-spectral
domain. Later in this section, we present the harmonic analysis
of SLSHT distribution and provide an inversion relation to
obtain the signal from its given directional SLSHT distribution.

A. Forward Directional SLSHT

Definition 1 (Directional SLSHT): For a signal ,
define the directional SLSHT distribution component

of degree and order as the
spherical harmonic transform of a localized signal where
localization is provided by the rotation operator acting on
window function , i.e.,

(10)

for , where denotes
the maximum spherical harmonic degree for which the distri-
bution components are non-zero, and and de-
note the band-limits of the signal and the window function
, respectively. Also, each distribution component is
band-limited in with maximum degree
, i.e., when expressed in terms of Wigner- functions. We

elaborate on this shortly. Furthermore, we consider unit energy
normalized window functions such that .
Remark 1: The directional SLSHT distribution component

in (10) can be interpreted as the spherical harmonic transform
of the localized signal where the window function provides
asymmetric localization at spatial position
and the first rotation, through , determines the orientation of
the window function at . If the window function is azimuthally
symmetric, this orientation of the window function by be-
comes invariant and the SLSHT distribution components are de-
fined on [10].
Since themaximum spectral degree for which the SLSHT dis-

tribution is defined is , we consider the band-lim-
ited window function such that to avoid extending
significantly above . We discuss the localization of the

window function in spatial and spectral domains later in the
paper.

B. Harmonic Analysis

We now present the formulation of the directional SLSHT
distribution if the signal and the window function are rep-
resented in the spectral domain. Using the expression of the
spherical harmonics of a rotated function in (5), we can write
the SLSHT distribution component in (10) as

(11)
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where

denotes the spherical harmonic triple product, which can be
evaluated using Wigner- symbols or Clebsch-Gordan coef-
ficients [36], [40].
Remark 2: By comparing in (11) with (8), we note

that the band-limit of in is given by . Since
and in (11), our statement that the distribu-

tion component is non-zero for
follows since the triple product is non-zero
for only.

C. Inverse Directional SLSHT

Here, we define the inverse directional SLSHT to reconstruct
a signal from its SLSHT distribution. The original signal can be
reconstructed from its directional SLSHT distribution through
the spectral domain marginal, that is, by integrating the SLSHT
distribution components over the spatial domain SO(3) [18].
Using our harmonic formulation in (11), define as the
integral of the SLSHT distribution component over
SO(3) giving

(12)

where we have used the orthogonality relation of Wigner-
functions (see (7)). Using the expression in (12), we can find
the spherical harmonic coefficient of the signal as

(13)

which indicates that we only need to know the DC component of
the window function in order to obtain the signal from its
directional SLSHT distribution. It further imposes the condition
that the DC component of the window function must be non-
zero. Although the distribution components in (11) are defined
up to degree , we only require the components
up to for signal reconstruction.
Remark 3: The signal can also be reconstructed from its

SLSHT distribution by evaluating

for all and for all
and then employing the orthogonality relations of Wigner-
symbols to decouple the spherical harmonic coefficients of the
window function and the signal . The similar approach has
been employed in [12] to invert the signal from its modified
SLSHT distribution, where the SLSHT distribution is obtained
using azimuthally symmetric window function. This approach
does not impose restriction on the DC component of the window
function to be non-zero, instead, it requires the knowledge of
the energy of the window function. In this work, we consider
the inversion of a signal presented in (12) and (13), as this is the
most efficient formulation.
Computing the forward and inverse directional SLSHT is

computationally demanding. Since the directional SLSHT dis-
tribution components in (10) are defined for ,
the number of distribution components are of the order ,
while the sampling of is of the order ; thus, the direct eval-
uation of the directional SLSHT distribution is prohibitively
computationally expensive. Therefore efficient algorithms need
to be developed which reduce the computational complexity.
We address this problem in the next section.

D. Window Localization in Spatial and Spectral Domains

The directional SLSHT distribution is the spherical harmonic
transform of the product of two functions, the signal and the
rotated window function and we must be careful in inter-
preting the directional SLSHT distribution in the sense that we
do not mistake using the signal to study the window because
there is no distinction mathematically. The window function
should be chosen so that it provides spatial localization in some
spatial region around the north pole (origin). Since we have con-
sidered a band-limited window function, the window function
cannot be perfectly localized in the spatial domain due to the
uncertainty principle on the sphere [41]. However, it can be op-
timally localized by maximizing the energy concentration of the
window function in the desired directional region [2].
The interpretation and the effectiveness of the directional

SLSHT distribution depends on the chosen window function.
The window function with maximum localization in some de-
fined asymmetric region provides directional localization and
thus reveals directional features in the spatio-spectral domain.
The more directional the window function, the more directional
features it can reveal in the spatio-spectral domain but this tends
to increase the maximum spherical harmonic degree . Recall
that the maximum degree of the directional SLSHT distribution
components is given by . Thus, when the signal
is expressed in the spatio-spectral domain its spectral domain is
extended by , which results in spectral leakage. Therefore,
we want the window function to be simultaneously maximally
localized in some spatial region and have the minimum
possible band-limit which achieves the desired level of energy
concentration in the spatial region .
With the consideration that there exists localization trade-off

for a window function in spatial and spectral domain [41], the
choice of window function affects the resulting SLSHT distri-
bution. We highlight the future research problem that there is a
need to investigate the use of different window function at dif-
ferent spatial positions, such that the localization of the window
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function adapts to the characteristics of the signal being ana-
lyzed. An analogous problem is well known in time-frequency
analysis [42], where it has been shown that, according to several
different measures of performance, the optimal window func-
tion for short-time Fourier transform (STFT) depends on the
signal being analyzed.
Here, we propose using a band-limited eigenfunction ob-

tained from the solution of the Slepian concentration problem
[2] as a window function, concentrated in a spatially localized
elliptical region around the north pole. The elliptical region can
be parameterized using the focus colatitude of the ellipse
along the positive -axis and the arc length of the semi-major
axis:

(14)

where . Here
denotes the

angular distance between two points and on
the sphere. Since the major axis is along -axis, the elliptical
region is orientated along the -axis.
Remark 4: For a given focus , the region becomes more

directional as the arc length approaches from . For
, the region becomes azimuthally symmetric, i.e., we

recover the polar cap of central angle . Also, when ,
the region becomes azimuthally symmetric (polar cap) of cen-
tral angle .
As a result of the Slepian concentration problem [2], [43] to

find the band-limited function with bandwidth and maximal
spatial concentration in an elliptical region , we obtain

eigenfunctions. Due to the symmetry of the elliptical
region about - plane, the eigenfunctions are real valued [43].
Here we consider the use of the band-limited eigenfunction with
maximum energy concentration in the elliptical region for given
band-limit and refer to such an eigenfunction as the eigen-
function window.

IV. EFFICIENT COMPUTATION OF DIRECTIONAL SLSHT
DISTRIBUTION

Here, we present efficient algorithms for the computation of
the directional SLSHT distribution of a signal and the signal
reconstruction from its directional SLSHT distribution. First,
we discuss the computational complexities if the SLSHT dis-
tribution components are computed using direct quadrature as
given in (10) or using the harmonic formulation in (11). Later,
we develop an alternative harmonic formulation which reduces
the computational burden. Finally, we present an efficient algo-
rithm that incorporates a factoring of rotations [44] and exploits
the FFT.
First we need to parameterize the required tessellation

schemes for for the representation of the signal and the
window and for SO(3) which forms the spatial domain of the
directional SLSHT distribution. Since the maximum spectral
degree of the signal is , we therefore consider the equian-
gular tessellation to represent . Since the maximum
degree for all SLSHT distribution components in

is , we therefore consider the tessellation to represent
the SLSHT distribution components on .

A. Direct Quadrature and Harmonic Formulation

We define the forward spatio-spectral transform as evaluation
of each SLSHT distribution component . Evaluation
of the forward spatio-spectral transform using exact quadrature
in (10) requires the computation of two dimensional summation
over the tessellation of for each 3-tuple . Since there
are such 3-tuples in the tessellation scheme and the
SLSHT distribution components are of the order , the
computational complexity to compute all distribution compo-
nents using direct quadrature is . Using the harmonic
formulation in (11), the complexity to compute each SLSHT
distribution component is and to compute all SLSHT
distribution components is . Although the harmonic
formulation in (11) is useful to establish that the signal can be re-
constructed from the directional SLSHT distribution, it is much
more computationally demanding than direct quadrature. We
develop efficient algorithms in the next subsection which im-
prove the computational complexity of the harmonic formula-
tion and make it more efficient than direct quadrature.
For the inverse directional SLSHT distribution, we only need

to integrate over SO(3) to obtain the signal in the spherical har-
monic domain as proposed in (12). Since the integral can be
evaluated by a summation over all Euler angles using quadrature
weights, an efficient way to recover the signal from its SLSHT
distribution is through direct quadrature, with complexity of

for each distribution component and for all
components.
In order to evaluate the integral in (12) exactly, we need to de-

fine quadrature weights along Euler angle in the tessellation
. We evaluate the integral in (12) by the following summa-

tion2

(15)

where the quadrature weights follow from [35], with

(16)
where is defined as [35]

(17)

2In the evaluation of (15) we have computed the summation over
sample points in both and . This is due to the tessellation required
to capture all information content of . However, if one were
considered in recovering only, then given the quadrature rule in [35] in
(15) could be computed exactly with only sample points in and .
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B. Fast Algorithm for Forward Directional SLSHT

Here, we develop a fast algorithm to reduce the computa-
tional complexity of the forward SLSHT. We first consider an
alternative harmonic formulation of the forward SLSHT and
then employ the factoring of rotations approach which was first
proposed in [44] and has been used in the implementations of
the fast spherical convolution [45] and the directional spherical
wavelet transform [15].
We may write the directional SLSHT distribution component

in (10) as a spherical convolution [15] of and the
spherical harmonic modulated signal , giving

(18)

which can be expressed, using the definition of the Wigner-
function in (6), as

(19)

The band-limit of the spherical harmonic modulated signal
is . Since the maximum for which is non-zero is
, we must compute up to , which is band-lim-

ited to . However, we only need to compute the spher-
ical harmonic coefficients of the modulated signal up
to degree . Therefore, the computation of the spherical
harmonic transform of is an interesting sub-problem. We
show in Appendix A that the spherical harmonic coefficients

for of the signal can be
computed in time for all and .
By factoring the single rotation by into two rotations

[15], [44], [45]

(20)

and noting the effect of rotation on spherical harmonic coeffi-
cients in (5), we can write the Wigner- function in (6) as

(21)

where and we have used the following sym-
metry properties of Wigner- functions [40]

(22)

Using the Wigner- expansion given in (21), we can write
the alternative harmonic formulation of the SLSHT distribution
component in (18) as

(23)

where . By reordering the summations we can
write

(24)

where

Comparatively, the computation of the SLSHT distribution
components using the expression given by (24) is not more
efficient than the initial expression (19). However, the presence
of complex exponentials can be exploited by employing FFTs
to evaluate the involved summations.
The objective of factoring the rotations is to carry out the
rotation along the -axis as a rotation along the -axis. The

rotations along the -axis are expressed using complex expo-
nentials and thus these rotations can be applied with much less
computational burden, by exploiting the power of an FFT, rela-
tive to a rotation about the -axis. All the three rotations which
characterize the spatial domain of the SLSHT distribution
components appear in complex exponentials in (24) and thus
we can use FFTs to evaluate the summation of
over and . First we need to compute for
each and for each which requires the one-dimensional
summation over three dimensional grid formed by and
and thus can be computed in . Using ,

the summation over the complex exponentials in (24) can be
carried out in using FFTs. The overall com-
plexity of this approach is dominated by the computation of

, that is, for each SLSHT distribution
component and for the complete SLSHT distribu-
tion. We note that the evaluation of requires the
computation of which can be evaluated over the
plane for each using the recursion formula of [46] with a
complexity of . The matrices are independent of the
signal under analysis and therefore can be computed offline.
However, we compute matrices on-the-fly to minimize
storage requirements. Since is of the order , the matrices
can be evaluated in , which does not change the overall
complexity of our proposed algorithm. The overall asymptotic
complexity of our fast algorithm is thus .
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Remark 5: Since the complexity to compute the spherical
harmonic transform of the modulated signal up to de-
gree is for each as shown in
Appendix A, the complexity of our fast algorithm to compute
one SLSHT distribution component is

. The factor in the complexity does not change
if we compute spherical harmonic transform of up to de-
gree for all instead of each .
Remark 6: In order to evaluate (19), we note that the sep-

aration of variables approach [21] can be used as an alterna-
tive to the factoring of rotation approach to develop a fast al-
gorithm. This is due to the factorized form of Wigner- func-
tion and the consideration of equiangular tessellation scheme
for SO(3), which keeps the independence between the sam-
ples along different Euler angles. In terms of the computational
complexity, the separation of variable approach has the same
computational complexity as the factoring of rotation approach.
However, the separation of variable approach needs to compute
Wigner- functions for all values of but only requires a two
dimensional FFT, whereas the factoring of rotation approach
only requires the evaluation of Wigner- function for but
requires a three dimensional FFT. Since both approaches have
the same complexity, we use the factoring of rotation in our im-
plementation of the fast algorithm.
Remark 7: If we want to analyze the signal with mul-

tiple window functions, then we do not need to recalculate the
spherical harmonic transform of the modulated signal ,
which accounts for the factor in the overall com-
plexity. Once it is computed, the SLSHT distribution can be
computed in time for each window function of the
same band-limit using the proposed efficient implementation.
Our proposed formulation and efficient implementation can

be further optimized in the case of a steerable window function.
Steerable functions have an azimuthal harmonic band-limit in
that is less than the band-limit in (see [20], [21] for further

details about steerability on the sphere). In this case, the
factor contributing to the overall asymptotic complexity of the
fast algorithm is reduced to . Furthermore, we may then
compute the directional SLSHT for any continuous
from a small number of basis orientations (due to the linearity
of the SLSHT).
If the signal and window function are real, the computational

time can be further reduced by considering the conjugate sym-
metry relation of the spherical harmonic coefficients. Further-
more, in this setting, the SLSHT distribution components also
satisfy the conjugate symmetry property

(25)

and we do not need to compute the SLSHT distribution compo-
nents of negative orders.

V. RESULTS

In this section, we first demonstrate the numerical validation
and computation time of our algorithms to evaluate the direc-
tional SLSHT components. Later, we provide an example to il-
lustrate the capability of the directional SLSHT, showing that it

reveals the directional features of signals in the spatio-spectral
domain. The implementation of the our algorithms is carried out
in MATLAB, using the MATLAB interface of the SSHT3 package
(the core algorithms of which are written in and which also
uses the FFTW4 package to compute Fourier transforms) to effi-
ciently compute forward and inverse spherical harmonic trans-
forms [35].

A. Numerical Validation and Computation Time

In order to evaluate the numerical accuracy and the compu-
tation time, we carry out the following numerical experiment.
We use the band-limited function for spatial localization
with band-limit and spatial localization in the region

. We generate band-limited test signals with
band-limits by generating spherical harmonic
coefficients with real and imaginary parts uniformly distributed
in the interval .
For the given test signal, we measure the computation time
to evaluate spherical harmonic transform of the modulated

signal, i.e., for and for all
, using the method presented in Appendix A. Given

the spherical harmonic transform of the modulated signal, we
then measure the computation time to compute all directional
SLSHT distribution components for
and using our fast algorithm presented in Section IV.B,
where we compute the Wigner- functions on-the-fly for the ar-
gument by using the recursion of Trapani [46]. We also
record the computation time to recover a signal from its
SLSHT distribution components. All numerical experiments are
performed using MATLAB running on a 2.4 GHz Intel Xeon pro-
cessor with 64 GB of RAM and the results are averaged over ten
test signals. The computation time and are plotted against
the band-limit of the test signal in Fig. 1(a) and (b), which
respectively evolve as and for fixed and thus
corroborate the theoretical complexity. The computation time
for the inverse directional SLSHT is plotted in Fig. 1(c), which
scales as for fixed , again supporting the theoretical
complexity.
We reconstruct the original signal from its SLSHT distri-

bution components using (15) and (12), in order to assess the
numerical accuracy of our algorithms by measuring the max-
imum absolute error between the original spherical harmonic
coefficients of the test signal and the reconstructed values. The
maximum absolute error is plotted in Fig. 1(d) for different
band-limits , which illustrates that our algorithms achieve
very good numerical accuracy with numerical errors at the level
of floating point precision.

B. Directional SLSHT Illustration

In this subsection, we provide examples to illustrate the ca-
pability of the proposed transform to reveal the localized con-
tribution of spectral contents and probe the directional features
in the spatio-spectral domain.
1) Example 1—Synthetic Data Set: We first construct a

signal having localized contribution of higher degree spectral

3http://www.jasonmcewen.org/
4http://www.fftw.org/
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Fig. 1. Numerical validation and computation time of the proposed algo-
rithms. The computation time in seconds: (a) (b) and (c) . For fixed

evolves as and both and scale as as shown by the
solid red lines (without markers). (d) The maximum error , which empirically
appears to scale as , as shown by the solid red line. (a) Computation
time to evaluate , (b) Computation time to evaluate all SLSHT
distribution components given , (c) Inverse transform computation
time, (d) Numerical validation.

Fig. 2. (a) Spectrally truncated unit energy normalized Earth topographic map
and (b) signal composed of higher degree spherical harmonics localized

in elliptical regions. (c) Weighted sum of and as defined in (27). (a) ,
(b) , (c) .

contents and then analyze the signal using proposed directional
SLSHT. Let signal be the spectrally truncated, unit energy
normalized Earth topographic map with band-limit ,
which is obtained by using spherical harmonic model of to-
pography of Earth and is shown in Fig. 2(a). Also consider the
signal composed of higher degree spherical harmonics lo-
calized in two non-overlapping elliptical regions with different

orientation. We obtain such a signal by spectrally truncating
the following signal with in the band-limit ,

(26)

where and are the elliptical regions of the form
, respectively rotated by

and . The unit energy nor-
malized signal is shown in Fig. 2(b). We note that the regions

and have orientation along colatitude and longitude
respectively.
We analyze the following synthetic signal using the proposed

transform

(27)

which can be considered as a sum of low frequency signal
and high frequency localized signal. The signal is shown in
Fig. 2(c), where it can be observed that the information cannot
be obtained about the presence of higher degree spherical har-
monics localized in different directional regions. Furthermore,
the spherical harmonic coefficients provide details about the
presence of higher degree spherical harmonics in the signal, but
do not reveal any information about the localized contribution
of higher degree spherical harmonics.
If we analyze the signal by employing the SLSHT using an

azimuthally symmetric window function, the presence of local-
ized contributions of higher degree spectral contents can be de-
termined in the spatio-spectral domain [10]. However, the pres-
ence of directional features cannot be extracted. Here, we illus-
trate that the use of the directional SLSHT enables the identifica-
tion of directional features in the spatio-spectral domain, which
is due to the consideration of an asymmetric window function
for spatial localization.
We obtain the directional SLSHT distribution components

of the signal using the band-limited eigenfunction
window with and 90% concentration in the spa-
tial domain in an elliptical region . Themagni-
tude of the SLSHT distribution components for order

and for degrees are shown in Fig. 3
for Euler angle (a) and (b) , and
for degrees , the components are shown for (c)

and (d) . Since the elliptical region is oriented
along the -axis, the window with orientation provides
localization along colatitude and the window with orientation

provides localization along longitude. It can be ob-
served that the localized contribution of higher degree direc-
tional spectral contents is extracted in spatio-spectral domain.
The localized higher degree directional features along the ori-
entation and are revealed in the spatio-spectral
domain as shown in Fig. 3(a) and (b) respectively, which are
not visible in lower degree distribution components as shown
in Fig. 3(c) and (d).
Due to the ability of the directional SLSHT to reveal the lo-

calized contribution of spectral contents and the directional or
oriented features in the spatio-spectral domain, it can be useful
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Fig. 3. Magnitude of the components of the directional SLSHT distribution of
the synthetic signal shown in Fig. 2(c). For fixed orientation of the window
function around -axis, the distribution components are mapped on
the sphere using for order . The components are shown
for degrees and for orientation (a) and (b) of
the window function around -axis, and the components are shown for degrees

and for orientation (c) and (d) . Top left:
, top right: .

Fig. 4. Mars signal in the spatial domain. The grand canyon Valles Marineris
and the mountainous regions of Tharsis Montes and Olympus Montes are indi-
cated.

Fig. 5. Magnitude of the components of the directional SLSHT distribution of
the Mars signal obtained using the eigenfunction window concentrated in an
elliptical region of focus and major axis . For fixed ori-
entation , the distribution components are mapped on the sphere
using for order and degrees (a) and
(b) . The components are shown for orientation
of the window function around the -axis. Top left: , top right:

.

in many applications where the signal on the sphere is localized
in position and orientation. We further illustrate the capability
of our proposed transform by analyzing the Mars topographic
map in spatio-spectral domain.
2) Example 2—Mars Data Set: Now, we consider the Mars

topographic map (height above geoid) as a signal on the sphere,
which is obtained by using the spherical harmonic model of the
topography of Mars5. The Mars topographic map is shown in
Fig. 4 in the spatial domain, where the grand canyon Valles
Marineris and the mountainous regions of Tharsis Montes and
Olympus Montes are shown, leading to the high frequency con-
tents. We note that the mountainous regions are non-directional
features of the Mars map, whereas the grand canyon serves as a
directional feature with direction orientated along a line of ap-
proximate constant latitude.
The directional SLSHT distribution components of

the Mars map are obtained using the band-limited eigenfunc-
tion window with and 90% concentration in the
spatial domain in an elliptical region . The magni-
tude of the SLSHT distribution components for order

and degrees and are shown
in Fig. 5(a) and (b) respectively for . It is evident that

5http://www.ipgp.fr/wieczor/SH/
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using orientation of the window probes the informa-
tion about the grand canyon Valles Marineris (directional fea-
ture) along longitude in the spatio-spectral domain. The local-
ized contribution of higher degree spherical harmonics towards
the mountainous region can also be observed in Fig. 5(b) for
degree . However, there is no significant contri-
bution of spherical harmonics of degree towards
mountainous region as indicated in Fig. 5(a), but the localiza-
tion of the directional features along the orientation is
revealed in the spatio-spectral domain.

VI. CONCLUSION

We have presented the directional SLSHT to project a signal
on the sphere onto its joint spatio-spectral domain as a direc-
tional SLSHT distribution. In spirit, the directional SLSHT is
composed of SO(3) spatial localization followed by the spher-
ical harmonic transform. Here, we have proposed the use of an
azimuthally asymmetric window function to obtain spatial lo-
calization, which enables the transform to resolve directional
features in the spatio-spectral domain. We have also presented
an inversion relation to synthesize the original signal from its
directional SLSHT distribution. Since data-sets on the sphere
are of considerable size, we have developed a fast algorithm
for the efficient computation of the directional SLSHT distribu-
tion of a signal. The computational complexity of computing the
directional SLSHT is reduced by providing an alternative har-
monic formulation of the transform and then exploiting the fac-
toring of rotation approach [44] and the fast Fourier transform.
The computational complexity of the proposed fast algorithm
to evaluate SLSHT distribution of a signal with band-limit
using window function with band-limit is
as compared to the complexity of direct evaluation, which is

. The numerical accuracy and the speed of our fast
algorithm has also been studied. The directional SLSHT dis-
tribution relies on a window function for spatial localization;
we have analyzed the band-limited window function obtained
from the Slepian concentration problem on the sphere, with
nominal concentration in an elliptical region around the north
pole. We provided an illustration which highlighted the capa-
bility of the directional SLSHT to reveal directional features in
the spatio-spectral domain, which is likely to be of use in many
applications.

APPENDIX A
SPHERICAL HARMONIC TRANSFORM OF MODULATED SIGNAL

Our objective is to compute the spherical harmonic transform
of the modulated signal , up to degree , for all and
. In order to serve the purpose, we use a separation variable

technique given by

(28)

Since and , we need to consider
the signal sampled on the grid for the explicit
evaluation of exact quadrature (note that sampling in could be
optimized given but this would require a
different tessellation of the sphere and will not alter the overall
complexity of the computation). Using (28), the integral over
, giving , can be computed first in
for all . Once is computed, the exact quadra-
ture weights that follow from [35] can be used to evaluate the
integral over in for each and in for
all and each . Thus the overall complexity to compute
the spherical harmonic transform of the modulated signal
up to degree is for each and

for all .
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