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Abstract—We develop a sampling scheme on the sphere that per-
mits accurate computation of the spherical harmonic transform
and its inverse for signals band-limited at using only sam-
ples. We obtain the optimal number of samples given by the de-
grees of freedom of the signal in harmonic space. The number of
samples required in our scheme is a factor of two or four fewer
than existing techniques, which require either or sam-
ples. We note, however, that we do not recover a sampling the-
orem on the sphere, where spherical harmonic transforms are the-
oretically exact. Nevertheless, we achieve high accuracy even for
very large band-limits. For our optimal-dimensionality sampling
scheme, we develop a fast and accurate algorithm to compute the
spherical harmonic transform (and inverse), with computational
complexity comparable with existing schemes in practice. We con-
duct numerical experiments to study in detail the stability, accu-
racy and computational complexity of the proposed transforms.
We also highlight the advantages of the proposed sampling scheme
and associated transforms in the context of potential applications.

Index Terms—2-sphere (unit sphere), harmonic analysis, sam-
pling, spherical harmonic transform, spherical harmonics.

I. INTRODUCTION

S IGNALS are inherently defined on the sphere in a variety
of fields of science and engineering. These include geodesy

[1], cosmology [2], computer graphics [3], medical imaging
[4], astrophysics [5], quantum chemistry [6], wireless commu-
nication [7], acoustics [8] and planetary science [9], to name a
few. In signal processing analysis on the sphere (e.g., [9]–[28])
the signal is often analysed in both the spherical (spatial) do-
main and harmonic (spectral) domain. The transformation from
spatial to spectral is through the spherical harmonic transform
(SHT) (see, e.g., [10], [11], [28]–[30]), which is the well-known
counterpart of the Fourier transform. For example, analysis of
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signals in the spectral domain through the SHT has been in-
strumental in refining the standard cosmological model and in
the study of the anisotropies in the cosmic microwave back-
ground (CMB) [31]. Consequently, the ability to compute the
SHT of a signal is of significant importance. Furthermore, since
data-sets on the sphere can be of considerable size [31], and the
cost of acquiring samples on the sphere can be large [8], [32],
the computation of the SHT of the signal should require the min-
imum possible number of samples, and be computationally ac-
curate and efficient.
The development of sampling schemes on the sphere and

computationally efficient methods to compute the spherical
harmonic transform from samples has been investigated exten-
sively in the literature [10], [11], [33]–[42]. Sampling schemes
and their associated SHT computational methods can be evalu-
ated by three key criteria: (1) the number of samples, defined as
the spatial dimensionality; (2) the computational complexity;
and (3) the numerical accuracy. In this work, we propose a
sampling scheme for band-limited signals on the sphere which
requires the same number of samples on the sphere as the
number of the degrees of freedom of the signal in harmonic
space. Furthermore, we develop an accurate method to compute
the SHT with complexity scaling, in practice, comparable with
the existing schemes. We first review the developments made
in the literature followed by a summary of the contributions of
this paper.

A. Relation to Prior Work

Among existing sampling schemes in the literature, iso-lati-
tude sampling schemes (e.g., [10], [11], [33], [35]–[40], [42]),
where the samples along longitude are taken over iso-latitude
rings (annuli), enable a separation of variables in the computa-
tion of the SHT, which results in a reduction in computational
complexity. For the computation of spherical harmonic trans-
forms, sampling theorems have been constructed [10], [11],
[37], [42], which lead to theoretically exact SHTs, in addition
to other numerical approaches, such as approximate quadrature
[35], [36]), least squares [33], [39] or spherical designs [43],
[44], which nevertheless often lead to accurate transforms. We
focus our attention on an iso-latitude sampling scheme that
facilitates accurate computation of the SHT of a signal that is
band-limited at (formally defined in Section II-B). For the
accurate computation of the SHT of a signal band-limited at ,
the optimal spatial dimensionality, denoted by , attainable
by any sampling scheme on the sphere is given by ,
which is the number of degrees of freedom in harmonic space.
Existing schemes either require or samples and there-
fore do not achieve the optimal spatial dimensionality. We refer
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the reader to [11] for a more comprehensive review of existing
sampling schemes.
An exact method to compute the SHT, based on a sampling

theorem on the sphere, was developed by Driscoll and Healy in
[10] exploiting an equiangular sampling comprised of iso-
latitude rings of points, where the number of points along longi-
tude, in each ring, is the same and equal to . Thus the spa-
tial dimensionality of Driscoll and Healy sampling scheme is

. The well-known Gauss-Legendre quadrature on the sphere
[45], [46] may also be used to construct a sampling theorem
and exact SHT from samples on the sphere. The place-
ment of iso-latitude rings is given by the roots of the Legendre
polynomials of order , as dictated by Gauss-Legendre quadra-
ture, and the number of points in each ring remains .
More recently, a new sampling theorem based on an equiangular
sampling scheme has been proposed by McEwen and Wiaux,
which achieves spatial dimensionality [11], and requires

fewer samples than the Gauss-Legendre approach.
For all of these sampling schemes the associated spherical har-
monic transforms (that are stable and do not require precompu-
tation) have computational complexity of . We note that
an algorithm was developed for the Driscoll and Healy sam-
pling theorem [37] with complexity , but it re-
quires precomputation and storage. The precomputation
is practicable for applications in acoustics [8], quantum chem-
istry [6], medical imaging [4], where the band-limit is of the
order . However, the precomputation becomes infea-
sible for applications in astrophysics [5] and cosmology [2],
where the band-limit is of the order , as the precom-
putation requires 1.2 GB of storage for [38], which
scales to approximately 77 GB for the band-limit
[11], [42].
SHTs using least squares approaches have also been de-

veloped for equiangular sampling schemes [33], [39], which
require samples and achieve good accuracy. However, a
naive application of least squares is computationally inefficient
since the computational complexity to compute SHTs scales as

. However, a separation of variables can be employed
to reduce the complexity to [39]. Moreover, a least
squares method can also be developed to compute SHTs using
the optimal number ( ) of spatial samples (either
regularly or irregularly) distributed over the sphere, but the
complexity of such method scales with and therefore
least squares becomes computationally infeasible even for
small band-limits. We note that complexity of the least
squares approach using samples cannot be reduced by a
separation of variables since aliasing errors are introduced if the
number of samples along longitude in each iso-latitude ring is
smaller than . Furthermore, the accuracy and stability of
the least squares approach cannot be guaranteed. For example,
the reconstruction error in the least squares system using
samples is (obtained through numerical experiments on
the regular grid) for band-limit and the error grows
with the band-limit.
We also note the work on spherical designs for computing

integrals over the sphere using quadrature based on uniform
weighting (see [43], [44] for a comprehensive review). Is it nu-
merically, but rigorously, proved that the computation of the

SHT of a band-limited signal using spherical designs can be
performed with samples [47]. It is also conjectured that in
fact samples may be used [48], although this is not proved.
Spherical designs with samples have been constructed suc-
cessfully for band-limit up to only [47].

B. Contributions

A summary of the contributions of this paper are as follows.
• We develop a sampling scheme on the sphere that permits
accurate computation of the SHT for band-limited signals,
attaining the optimal spatial dimensionality of .

• We develop a computationally efficient method to compute
the SHT and its inverse (called the forward and inverse
SHT in the sequel) using our optimal spatial dimension-
ality sampling scheme, which has complexity with scaling,
in practice, comparable to the existing methods, which do
not achieve optimal spatial dimensionality. Furthermore,
once the sample positions are determined no additional
precomputation is required.

• We characterize the numerical accuracy and computational
complexity of our proposed SHT as a function of the band-
limit parameter demonstrating its feasibility on large real-
world data-sets.

C. Paper Organization

We review the mathematical background and harmonic anal-
ysis on the sphere in Section II. In Section III, we propose the
sampling scheme on the sphere, which achieves optimal spa-
tial dimensionality, and present the associated novel SHT. We
evaluate the numerical accuracy of the proposed SHT, present
its computational complexity analysis and outline potential ap-
plications in Section IV. The concluding remarks are made in
Section V.

II. PRELIMINARIES

In this section we review the mathematical background for
signals and harmonic analysis on the sphere.

A. Signals on the Sphere

In this work, we consider square integrable complex func-
tions of the form , defined on unit sphere

, where denotes the Euclidian norm,
denotes the co-latitude and denotes the longitude.
The inner product of two functions and defined on is de-
fined as [13]

(1)

where denotes the complex conjugate, denotes
the differential area element on the sphere and the integration
is carried out over the sphere, that is, . With
the inner product in (1), the space of square integrable complex
valued functions on the sphere forms a complete Hilbert space

. Also, the inner product in (1) induces a norm
. We refer to the functions with finite induced norm as

signals on the sphere.
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B. Harmonic Analysis on the Sphere

The Hilbert space is separable and the spherical har-
monic functions (or spherical harmonics for short)
[28]–[30] of all degrees and orders form
the archetype complete orthonormal set of basis functions. By
completeness, any signal can be expanded as

(2)

where

(3)

is the spherical harmonic coefficient of degree and order .
Some background properties of spherical harmonics used in this
work are given in Appendix A.
The signal is defined to be band-limited at degree
if for . The set of bandlimited signals forms

an dimensional subspace of , which is denoted by
.

C. Spin Functions on the Sphere

The spin functions on the sphere, denoted by
and parameterized by integer spin , are special functions which
are defined by their behavior under local rotations. The local ro-
tation by , rotates the spin function by in the tangent
plane formed at a point on the sphere characterized by and
[49]. Under such rotation, the rotated spin function is related
to the original spin function through

(4)

For spin parameter , the spin function becomes the
standard (non-spin or scalar) function (defined in Section II-A
with harmonic expansion in Section II-B) on the sphere, that is

.
The spin spherical harmonics (sometimes also referred to as

spin weighted spherical harmonics), denoted by and de-
fined for degree , order and spin form a com-
plete set of basis functions for spin functions on the sphere
(see Appendix A for the definition of ). Spin spherical har-
monics also satisfy the property in (4) and therefore serve as a
more suitable choice of basis functions for the following expan-
sion of spin functions

(5)

where

The spin function is said to be band-limited at if
for all . The set of such band-limited spin functions for
each form a subspace of and is denoted by . Fur-
thermore, we note that , that is, the spin spherical

harmonic becomes the standard spherical harmonic for .
In the sequel, any reference to a function (or signal) and spher-
ical harmonic means finite energy scalar function ( ) on
the sphere and scalar spherical harmonic ( ) respec-
tively, unless otherwise explicitly stated that the signal or spher-
ical harmonic under consideration is spin weighted.

III. OPTIMAL SAMPLING SCHEME AND NOVEL SPHERICAL
HARMONIC TRANSFORM

We first consider the spherical harmonic transform (SHT) of
band-limited scalar functions , for which the summation
over degree in (2) is truncated to , that is,

(6)

We first present our sampling scheme for the discretization of
a band-limited signal on the sphere. Then we develop the pro-
posed forward SHT which determines the spherical harmonic
coefficients for and using the dis-
cretized signal. We also present the inverse SHT to determine
the signal efficiently over the proposed sampling scheme from
its spherical harmonic coefficients. We later show that the pro-
posed sampling scheme and SHTs (both forward and inverse)
are also applicable for band-limited spin functions .

A. Proposed Sampling Scheme

We propose an iso-latitude sampling of the sphere. Define the
indexed vector as

(7)

which consists of points along . Also define
as a vector of arbitrary

points along for . We shortly present the location of
these sample points. For discretization along , we consider

equally spaced sampling points along for each .
Define be a vector of equally spaced sampling points
along in the ring placed at , given by

(8)

In this way, we will have iso-latitude rings of sampling points
along for each sampling point along , where the number
of points, , in each ring depends on the location of the
ring along latitude. We note that the number of samples in the
proposed sampling scheme attains the optimal spatial dimen-
sionality, that is,

(9)

which also represents the number of degrees of freedom in har-
monic space for a signal band-limited at . We first develop the
forward and inverse SHTs and later provide details about the lo-
cation of the samples in the vector .
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B. Forward Spherical Harmonic Transform – Formulation

We develop the forward SHT to compute the spherical har-
monic coefficients of a band-limited signal sampled
over the samples of our sampling scheme. First, we first
develop the necessary mathematical formulation and later we
present the philosophy of our approach and develop the forward
SHT. For order , define a vector

(10)
with

(11)

for each , where denotes scaled as-
sociated Legendre functions (see Appendix A for the definition
of associated Legendre functions and spherical harmonic ).
By defining a matrix as

...
...

. . .
...

(12)

and a vector containing spherical harmonic coefficients of
order given by

(13)

we can write as follows

(14)

where the vector contains the values for .
It is possible to recover by inverting this system, which is
elaborated shortly.
Remark 1: Using the formulation in (14), number of

spherical harmonic coefficients of order (or ) contained
in the vector (or ) can be determined by first computing

(or ) over number of samples or equivalently
by evaluating (or ) for all and the
matrix in (12) and then solving (14). We note that

(using (30)), is not dependent on the signal and
must be chosen such that can be inverted accurately,

which enables the accurate computation of (or ).

C. Forward Spherical Harmonic Transform – Philosophy

Following Remark 1, we need to compute formulated
in (11) for all and for given . Using an FFT,

for each can be computed exactly by evaluating the
integral as a summation, provided the following two conditions
are satisfied:
• , for all and for all

, which ensures that the univariate signal

along for each is band-limited at , given the
complex exponentials as basis functions along , and

• there are at least sample points in each -ring
placed for all .

These conditions and the following remark form the foundation
of our proposed method to compute the forward SHT.
Remark 2: For a band-limited signal on the sphere given by

(6), we have contributions from the complex exponentials
for ; thus we require samples in each
of the rings placed at in order to compute cor-
rectly regardless of the choice of . However, if the spherical
harmonic coefficients of all degrees (and orders) greater than

are known for some , their contributions can be
removed. Such a removal makes the signal band-limited along
with respect to the contributions of the complex exponentials

for . Consequently, can be com-
puted correctly by taking an FFT over only samples
(instead of samples) in a ring placed at some .
We elaborate this philosophy below.
Fig. 1 shows the graphical representation of the spectral do-

main of a signal band-limited at . There is one order
spherical harmonic coefficient and one order

spherical harmonic coefficient , which can be deter-
mined using (14) by first computing and

using an FFT over only one ring
of samples along placed at . It should be noted
that an FFT over samples, in fact, computes cor-
rectly for all orders . Once is computed,
the signal at the other sample positions (for all
and associated samples along in each ring) can be updated as

(15)

where

(16)

denotes the part of the signal composed of contribution
of spherical harmonics of order and and all degrees

. Once the signal is updated at other sample positions
as given in (15), there is no contribution of spherical harmonics
of orders and or equivalently there is no
contribution of complex exponentials and
in the signal. Thus, following the conditions stated earlier in
this subsection, we need (instead of ) samples
along in the rings placed at all . We only require

samples along the -ring placed at to determine
the spherical harmonic coefficients of order and ,
which once computed can be used to update the signal as

(17)
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Fig. 1. The graphical representation of the spectral domain (formed by spher-
ical harmonic coefficients) of a signal band-limited at . For each
, there are spherical harmonic coefficients.

at other sample positions for all and samples in
the associated samples along in each ring. Proceeding in this
similar manner, we note that the forward SHT can be computed
using number of samples along each ring placed
at . Using the philosophy mentioned
above, we summarize the proposed forward SHT in the form of
the procedure below.

Procedure 1: Forward Spherical Harmonic Transform

Require: , , given

1: procedure FORWARD SHT( )

2: for do

3: compute and by evaluating and
for all by taking point FFT

along each -ring

4: evaluate and , using

5: compute and by inverting (14)

6: determine for all and all associated
sampling points along

7: update for all
and all associated sampling points along

8: end for

9: return

10: end procedure

D. Inverse Spherical Harmonic Transform

The inverse SHT computes the signal from its spherical har-
monic coefficients. Using the separation of variables technique
(also adopted in [10], [11], [38], [40]), changing the order of

summation in (2) and using (11) and (16), we write the inverse
SHT as follows

(18)

where and are the sample points belonging to the proposed
sampling scheme. The inverse SHT can be computed by the
following procedure.

Procedure 2: Inverse Spherical Harmonic Transform

Require: , given ,

1: procedure INVERSE SHT( )

2: initialization

3: for do

4: evaluate and for all and

5: compute and using (11) for all

6: compute using (16) for all sampling points

7: update for all sampling
points

8: end for

9: return

10: end procedure

E. Placement of Samples Along Co-Latitude

For the representation of band-limited signals with band-limit
we yet need to choose the location of samples,

, along co-latitude for the sampling scheme pre-
sented in Section III-A, where a ring of equiangular
sample points along is placed at each . The simplest choice
is to use the equiangular set of samples given by

(19)

for the placement of the rings, where rings are placed such that
the rings with greater numbers of samples are placed nearer to
the equator . In this setting, the ring of 1 sample is
placed at , the ring of 3 samples is placed at
and so on. For such a placement of samples, the vector for
band-limit is given by

(20)

As an example, the samples on the sphere for this scheme are
shown in Fig. 2 for .
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Fig. 2. The sampling scheme on the sphere given in Section III-A for the representation of the signal band-limited at . (a) The samples along co-latitude
in a vector versus the index given in (20). The samples on the sphere are shown with a view from (b) North Pole and (c) South Pole.

Fig. 3. (a) The condition number of the matrix for and for different values of , where the matrix is constructed with the
sample positions along co-latitude in (b) a vector given in (20). (c) The maximum of the condition number, for different band-limit

. Note that the maximum condition number quickly grows to large values as the band-limit increases.

We note that the proposed forward SHT requires the sam-
ples in the vector to be chosen such that the matrix be-
comes invertible so that the system in (14) can be inverted ac-
curately. The sampling along the co-latitude as given in (20), al-
though an attractive choice, may not be appropriate as thematrix

may become ill-conditioned. For example, the condition
number (ratio of the largest eigenvalue to the smallest eigen-
value), denoted by , of the matrix , constructed with the
sample positions given in (20), for and for different
values of is plotted in Fig. 3(a) and the samples in a
vector are shown in Fig. 3(b). Furthermore, the maximum of
the condition number, denoted by over
for different values of band-limit is plotted in Fig. 3(c), where
it can be observed that at least one matrix for
becomes more ill-conditioned for larger band-limit .
In order to address this issue, we propose the following

recipe to determine the optimal ordering of samples in a vector
, which we refer to as the condition number minimization
method. For a given and samples in given by (19), the
vector is constructed as follows:
• Choose farthest from the poles,
which is a natural choice for the ring of samples
along .

• For each , choose from the set
, given in (19), which minimizes the condition number of

the matrix .
Such a placement of samples along co-latitude ensures the
robust inversion of the system given by (14), thus resulting in
an accurate computation of spherical harmonic coefficients by
the proposed forward SHT. As an illustration, we again plot
the condition number of the matrix obtained using the
optimal sample positions for in Fig. 4(a), the optimal
sample positions in Fig. 4(b) and the maximum condition
number ) for different band-limits in Fig. 4(c). In
comparison to the plots in Fig. 3, the condition number is sig-
nificantly smaller for the case of optimal sampling, which leads
to an accurate implementation of the proposed forward SHT.
Furthermore, when computing multiple harmonic transforms
for different , the optimal position of samples in a vector
needs to be computed once only for each . The vector can
be stored in a double precision with the storage requirement of
only 30.4 KB for , for example, and approximately
60 MB for all band-limits . Moreover, we highlight
that this storage determines the placement of iso-latitude rings
on the sphere and is required to be known for either forward
or inverse transform. Once the sample positions are known, we
do not require any further precomputation for the computation
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Fig. 4. (a) The condition number of the matrix for and for different values of , where the matrix is constructed with the optimal
sample positions along co-latitude in (b) a vector obtained using the condition number minimization method presented in Section III-E. (c) The maximum of the
condition number, for different band-limit . Note that the maximum condition number is significantly smaller
for the case of optimal sampling, resulting in an accurate implementation of the proposed forward SHT method.

of SHTs. We discuss the computational complexity of the
proposed transforms later in the paper.

F. Alternative Placement of Samples Along Co-Latitude

The equiangular samples in the set are placed along co-lat-
itude according to a uniform measure . Alternatively, the
samples along co-latitude can be placed according to different
measures. For example, in the context of compressive sensing,
it has been proved in [50] that a sparse (in spectral domain)
band-limited signal can be recovered from fewer measurements
if samples are drawn from the measure , com-
pared to sampling with respect to the uniform measure ,
which in turn has been shown by [51] to require fewer samples
than sampling with respect to the measure .
We compare the equiangular placement of rings with the

placement of rings according to the measures and
. Define and for

as sets of samples along co-latitude,
where samples are placed according to the measures
and , respectively. The sets and are con-
structed by choosing (South Pole) and using the
following relation between the consecutive samples

for . Using the sets and , we construct
the indexed vectors and , respectively, similar to in (20)
defined for the set in (19), to determine the sample positions
of iso-latitude rings such that the ring with samples is placed
nearer to the equator.
For , we show the sample positions in Fig. 5(a)

and the condition number of the matrix , constructed
with the sample positions for different values of
in Fig. 5(c), where it can be observed that the placement of rings
according to the measure results in greater ill-condi-
tioning of the matrices as compared to the placement of
rings according to the uniform measure . We also optimize

the sample positions by applying the proposed condition
number minimization method. The optimal sample positions
are shown in Fig. 5(b) and the condition number of the ma-
trix , obtained using the optimal sample positions for dif-
ferent values of , is also plotted in Fig. 5(c). Since
the matrices for the original are highly ill-conditioned,
the proposed condition number minimization method, that per-
forms the re-ordering of the sample positions along co-latitude,
does not find an ordering that significantly improves the ill-con-
ditioning of the matrices.
We also carry out a similar analysis for the sample positions
shown in Fig. 6(a). The optimal sample positions ob-

tained by applying the condition number minimization method
is shown in Fig. 6(b) and the condition number of the matrix

using the sample positions or optimal sample positions
is plotted in Fig. 6(c) for different values of ,

which illustrates that the placement of rings according to the
measure also results in greater ill-conditioning
of the matrices as compared to the placement of rings
according to the uniform measure . Thus, we conclude that
the use of equiangular placement (with uniform measure )
of samples along co-latitude in the proposed sampling scheme
performs well compared to the use of sampling methods which
place the samples according to the measures and

. We note that the equiangular placement of sam-
ples is not the only choice to place samples along co-latitude
and more sophisticated sampling methods can be developed.
For example, the sampling scheme that also takes into account
the location of samples in each ring along longitude can be
designed. However, the development of such a design is beyond
the scope of the current paper and is considered as a direction
for future research.

G. Computation of Spherical Harmonics

The implementation of both forward and inverse transforms
require the computation of scaled associated Legendre functions

for all degrees and orders
and for all . Different recursion relations can be used
for the computation of associated Legendre functions for given
. For example, we can use the recursion proposed by Risbo
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Fig. 5. (a) The sample positions constructed from the set of samples placed along co-latitude according to the measure for the band-limit ,
(b) the optimal sample positions and (c) the condition number of the matrix for different values of , where the matrix is constructed
with the sample positions (shown in (a)) or optimal sample positions (shown in (b)) as indicated.

Fig. 6. (a) The sample positions constructed from the set of samples placed along co-latitude according to the measure for the band-limit
, (b) the optimal sample positions and (c) the condition number of the matrix for different values of , where the matrix is

constructed with the sample positions (shown in (a)) or optimal sample positions (shown in (b)) as indicated.

[52] that computes for all orders for given de-
gree in each step of recursion, or alternatively, we can use the
three-term recursion which grows with degree and recursively
computes for all for a given .
We note that the forward transform iterates over different

values of and uses (which is composed of of
different and ) in each iterative step for
the computation of spherical harmonic coefficients in a vector
(or ) as given in (14). Furthermore, the computation of

in the implementation of the inverse transform also re-
quires for all for a given . Therefore
the three-term recursion is a natural choice to compute associ-
ated Legendre functions in our proposed transforms. For given
and , the three term recursion relation is given by

(21)

which grows with the degree for given with the following
initial condition for

(22)

and symmetry relation which follows from (32) given in the
appendix

(23)

The variant of recursion relation in (21) has been adopted in the
literature for the computation of associated Legendre polyno-
mials [37], [40]. As demonstrated in [53], the three-term recur-
rence relation in (21) is stable when the recurrence is carried out
in the direction of increasing , provided the initial condition in
(22) is computed accurately (either by using higher than double
precision arithmetic or by an adaptive rescaling).

H. Extension to Spin Functions on Sphere

By comparing the expansion of a spin function into spin
spherical harmonics in (5) with the expansion of the non-spin
standard function in (2), we note that the forward and inverse
transforms developed for non-spin functions are also applicable
to band-limited spin functions with the following
associations

(24)

The extension of forward and inverse transforms to the spin
functions require the computation of spin weighted spherical
harmonics , which can be carried out
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using the recurrence relation given in Appendix A, which is the
generalized version of the recurrence relation in (21). We do
not further investigate the application of our transforms to spin
function and limit our explorations for the non-spin standard
functions in the rest of the paper.

IV. ANALYSIS OF PROPOSED SAMPLING
SCHEME AND TRANSFORMS

In this section we evaluate the proposed sampling scheme and
associated SHTs using the following criteria: (1) the number of
samples required to accurately represent a band-limited signal;
(2) the computational complexity of the associated forward and
inverse transforms; and (3) the accuracy of the forward and in-
verse transforms. We have carried out the implementation of the
proposed transforms in double precision arithmetic. The code
to compute the scaled associated Legendre function

for given , and using the recursion relation in
(21) is written in C in order to speed up the computation, and
uses an adaptive rescaling so that double precision arithmetic is
accurate. The forward and inverse transforms, outlined as pro-
cedures in the previous section, are implemented in MATLAB .

A. Numerical Accuracy

We analyze the numerical accuracy of our forward and in-
verse transforms that implement our proposed optimal sampling
scheme on the sphere. The accuracy of the proposed transforms
means that the inverse (or forward) SHT of any band-limited
signal followed by the forward (or inverse) SHT yields the same
band-limited signal, with error on the order of the numerical pre-
cision. In order to evaluate the numerical accuracy of the pro-
posed SHTs, we carry out two numerical experiments, before
further studying the error distribution in harmonic space.
1) Experiment 1 (Spectral-Spatial-Spectral): In our first ex-

periment, we generate the test signal spherical harmonic coef-
ficients for with real and imagi-
nary parts uniformly distributed in the interval . The in-
verse SHT is then used to synthesize the band-limited test signal

in the spatial domain over the samples of our sam-
pling scheme, followed by the forward SHT to compute the re-
constructed spherical harmonic coefficients, denoted by .
The experiment is repeated 10 times and the average values for
the maximum error and the mean error , given by

(25)

(26)

are recorded and plotted in Fig. 7 for band-limits in the range
.

2) Experiment 2 (Spatial-Spectral-Spatial): In the second
experiment to test the numerical accuracy of the proposed trans-
forms, we randomly generate the complex valued band-limited
test signal with real and imaginary parts uniformly
distributed in the interval over the samples of our
sampling scheme. The forward SHT, followed by inverse SHT
is applied on the test signal to obtain the reconstructed signal

. We repeat the experiment 10 times and the obtain the
average values for the maximum error and the mean error

Fig. 7. Experiment 1 to test the numerical accuracy of the proposed transforms:
for band-limits in the range , we plot the maximum error and
the mean error, respectively given in (25) and (26), between the test signal
and the reconstructed signal in the spectral domain.

Fig. 8. Experiment 2 to test the numerical accuracy of the proposed transforms:
for band-limits in the range , we plot the maximum error and
the mean error, respectively given in (27) and (28), between the test signal
and the reconstructed signal in the spatial domain.

between the test signal and reconstructed signal ,
defined as

(27)

(28)

where the sum is over all points in the proposed sampling
scheme. Both and are plotted in Fig. 8 for the band-
limit in the range .
3) Further Analysis: It can be observed that both the max-

imum error and the mean error grows quadrati-
cally with the band-limit , which is due to the computational
flow of the proposed transform. The proposed transform sequen-
tially computes the spherical harmonic coefficients , first
for order , proceeding to order . The com-
putation of the spherical harmonic coefficients of order re-
quires knowledge of all coefficients with order greater than
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Fig. 9. For experiment 1, the error between the spher-
ical harmonic coefficients of the test signal and coefficients of the reconstructed
signal. is plotted in base-10 logarithmic scale as a surface plot for all de-
grees and orders , where the band-limit is . Note that
the error increases as order decreases from to 0.

because the forward transform eliminates the effect of all co-
efficients greater than from the sample positions in the rings
placed at to avoid aliasing, before taking FFTs along these
rings. Any error introduced in the computation of the spher-
ical harmonic coefficients of order propagates in the com-
putation of coefficients of order less than . In order to fur-
ther elaborate, we plot the error for

and averaged over 10 realization of experiment 1
in Fig. 9, where it can be observed that error is comparatively
smaller for higher order coefficients and increases as order
decreases from to 0.

B. Why is Spatial Dimensionality Important?

The fundamental property of any sampling scheme is the
number of samples required to accurately represent a band-lim-
ited signal. The existing sampling schemes in the literature [10],
[11], [37], [45], [46] that support an accurate SHT do not attain
the optimal spatial dimensionality on the number
of samples, as also highlighted earlier. In comparison, our
proposed sampling scheme and associated transforms require

samples, which is the optimal spatial dimensionality
attainable by any sampling scheme since the band-limited
signal belongs to the dimensional subspace .
Now, we briefly discuss the significance of achieving optimal

spatial dimensionality. In addition to the practical considera-
tions [8], [32], [54] that desire fewer samples for the repre-
sentation of band-limited signals, we highlight that experiment
2, composed of forward transform of a signal randomly gener-
ated over samples followed by the inverse transform,
yields the original signal in the spatial domain. This is not the
case for existing sampling schemes since a random signal over

samples in the spatial domain, where typically [11]
or [10], may not belong to the dimensional subspace
of band-limited signals with band-limit .

C. Computational Complexity Analysis

First, we analyse the computational complexity of the pro-
posed forward SHT. Following the forward SHT procedure, the
complexity to compute for each , which only requires one

point FFT, is . Using the recursive relation
in (21), for all and for all and for
each and can be computed in time.
Since the computation of requires solving the system in

(14), that can be carried out naively using the least squares ap-
proach with complexity . However, the system in (14)
can be solved more efficiently in practice by employing fast al-
gorithms. For example, the system of size can be solved in

, instead of , using the algorithm of [55]. Once
is computed, the effect of higher order spherical harmonics

is removed from the signal, which can be carried out in two
steps: (1) evaluation of given in (16), which can be
done asymptotically in for each ; and (2) updating the
signal as for all
and all associated sampling points along , which is again per-
formed with complexity . Since these operations need to
be repeated for each , and is of the order , the complexi-
ties mentioned above are scaled by and therefore the overall
asymptotic complexity of the forward transform scales naively
as . The dominant factor is due to the inverting of
system in (14) only, which can be more efficiently implemented
in practice and we demonstrate later in this section that the com-
plexity of both the inversion of the system and the forward trans-
form scales close to in practice. If the matrices and
the inverse matrices (or pseudo-inverse) for all
are pre-computed, the theoretical complexity reduces to .
However, the pre-computation requires the storage of the order

and quickly becomes infeasible for higher band-limits
[11], [42]. We note that the complexity to compute the scaled
associated Legendre function for all and
for all is , which is not greater than the compu-
tational complexity of the forward transforms and therefore the
on-the-fly computation of spherical harmonics does not alter the
overall complexity of the proposed forward or inverse SHT.
Following the inverse SHT procedure, we first compute

scaled associated Legendre functions for each and
for all and all in , which is then used in (11) to eval-
uate . Therefore the complexity to compute
for all and each is and for all is . Once

is known, the summation over can be evaluated
to compute the signal at all spatial samples in .
Thus, the inverse SHT has the overall complexity of ,
which is similar to the complexity of the transforms that exist
in literature for different sampling schemes on the sphere.
We measure the computation times, denoted by and to

carry out the proposed inverse and forward transforms, respec-
tively, in experiment 1 detailed in the previous subsection for
band-limits . We also record the computation
time, denoted by , to perform only the step 5 of the forward
SHT procedure, which involves solving the matrix system of the
form given in (14) and is the only step that makes the theoret-
ical computational complexity of for the forward SHT.
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Fig. 10. The computation time (in seconds) taken by the proposed inverse
spherical harmonic transform to compute the complex signal of different band-
limits in the range from its spherical harmonic coefficients.
Note that scales as as indicated by red line (without markers).

Fig. 11. The computation times and in seconds. The time is taken
by the proposed forward spherical harmonic transform to compute the spherical
harmonic coefficients of the complex signal of different band-limits in the range

. The computation time taken by step 5 of the forward
spherical harmonic transform procedure. Note that both and scale close
to instead of due to the use of efficient techniques for inverting
the matrix system in practice. The and scaling is shown by solid
and dashed red lines (without markers) respectively.

An experiment is performed using MATLAB running on a ma-
chine equipped with 2.6 GHz Intel Core i7 processor and 4GB
of RAM and the computation times are averaged over 10 test
signals. The computation time , plotted in Fig. 10, evolves as

as dictated by the red solid line (without markers). The
computation times and are plotted in Fig. 11 where it
can be noted that the both and scale closer to
instead of in practice for band-limits up to ,
which is due to the use of computationally optimized routines
in LAPACK used by MATLAB.
A least squares system of size can also be constructed

based on the proposed sampling scheme. Since the least squares
separation of variables approach requires number of sam-
ples, that is, samples in each of the iso-latitude rings to
avoid aliasing errors, it cannot be used for the proposed sam-

pling scheme. Due to this fact, the complexity to solve a least
squares system for the proposed sampling scheme scales with

, which makes the least squares approach computation-
ally infeasible even for smaller band-limits. Furthermore, re-
construction error using least squares with samples is poor
even for low band-limits, e.g., reconstruction error for band-
limit is and the error grows with the band-limit.
In the proposed method, it is the removal of the contribution of
coefficients of order greater than from the sample positions
in the rings placed at before taking FFT along these rings,
which enables the elimination of aliasing errors and the efficient
and accurate computation of the SHT.

D. Potential Applications

We discuss three potential applications of our proposed sam-
pling scheme and associated SHTs in the fields of acoustics,
medical imaging and compressive sampling.
In acoustics, the head-related transfer function (HRTF),

which serves as a quantitative measure of the response of
human body anatomical features to sound waves, is required in
the reconstruction of real life auditory scenes and is determined
by setting up an experiment to take measurements over the
sphere [8], [56]. The HRTF is a band-limited function on the
sphere, where the band-limit varies directly with the audio
frequency and the band-limit corresponding to the maximum
frequency of 20 kHz is [8]. Since the measurements
over the sphere involves the rotation of a sound source or lis-
tener or both, a sampling scheme which requires fewer samples
implies that the band-limited HRTF function can be measured
exactly for lower cost. Since our sampling scheme achieves the
optimal limit on the number of samples, it can potentially be
adopted for taking measurements and accurate HRTF repre-
sentation. We note that the proposed sampling scheme also has
flexibility in terms of sample positions along longitude as the
sample positions can be flexibly rotated (or placed) along the
ring. Furthermore, the placement of samples along co-latitude
given in (20) can be chosen because the maximum band-limit in
acoustics is , for which the maximum condition number
of the matrix with the consideration of in (20) is only of
the order , resulting in an accurate computation of the SHT.
The reduction in number of samples required to represent

band-limited function is of great importance in applications,
where the cost of acquiring a single sample is large. For ex-
ample, diffusion magnetic resonance imaging (MRI) in medical
imaging is one such application, where the cost is measured in
terms of sample acquisition time. The acquisition strategies con-
sider sampling on multiple spherical shells for each voxel of the
brain and are time consuming since millions of voxels are gener-
ally considered. The total number of samples, and thus total ac-
quisition time, can be reduced by a factor of at least twowhen re-
placing the existing sampling methods with our proposed sam-
pling scheme. Such an enhancement in acquisition time is of
considerable importance in order to make diffusion MRI acces-
sible for clinical use. Furthermore, since the band-limit for each
spherical shell is considered to be of the order , the place-
ment of samples along co-latitude given in (20) can be used di-
rectly for the exact representation of data on each spherical shell.
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In compressive sampling [57], [58], the ratio of the number
of required measurements to the spatial dimensionality of the
signal scales approximately linearly with its sparsity. Since our
proposed sampling scheme achieves the optimal spatial dimen-
sionality, compared to the other schemes, it will increase the per-
formance of compressed sensing reconstruction on the sphere
when recovering signals directly on the sphere. Furthermore,
for sparsity priors defined in the spatial domain, such as sig-
nals sparse in the magnitude of their gradient, sparsity is also
directly related to the sampling of the signal [54], where our
optimal sampling scheme is likely to provide further enhance-
ment. The use of our sampling scheme in compressed sampling
reconstruction on the sphere is likely to have impact on a variety
of problems including more efficient acquisition, denoising, ex-
trapolation and deconvolution on the sphere.

V. CONCLUSION

For the accurate representation of a signal on the sphere band-
limited at with degrees of freedom in the spectral do-
main, the existing sampling schemes, which support accurate
computation of spherical harmonic transform, require or

samples. We have proposed a new sampling scheme on the
sphere which only requires samples to represent a band-lim-
ited signal. Thus, the proposed sampling scheme matches the
spectral dimensionality of the signal. For the proposed sampling
scheme, we have also developed forward and inverse spherical
harmonic transforms, which allow the computation of trans-
forms with sufficient accuracy and manageable computational
complexity and do not require any precomputation associated
with SHT once the sample positions are determined. We have
conducted numerical experiments to show the stability, accu-
racy and computational complexity of the proposed transforms
up to .
Our optimal dimensionally sampling scheme and associated

spherical harmonic transforms have great potential for use
in practical applications found in acoustics, cosmology, geo-
physics and beyond. For example, the reduction in the number
of samples in the proposed scheme may be exploited to reduce
the cost of acquisition significantly in diffusion MRI. Since the
choice of sampling along latitude is adaptive in the proposed
scheme, this additional flexibility can be exploited in practical
problems. For example, in applications where measurements
are only available in spatially limited regions, the proposed
sampling scheme can be adapted to these regions.

APPENDIX
MATHEMATICAL BACKGROUND

Spherical Harmonics: The spherical harmonic function,
, for degree and order is defined as

[28], [30]

(29)

with is the normalization factor such that

, where is the Kronecker delta func-
tion: for and is zero otherwise. is
the associated Legendre function defined for degree and order

as

for . We also note the following relation between
and

(30)

Spin Spherical Harmonics: The spin spherical harmonic
functions (or spin spherical harmonics for short), denoted by

are defined for degree , order and as

(31)

where denotes the Wigner- function [28], [30].
The spin spherical harmonics can be computed by di-
rectly evaluating the Wigner- function. However, in practice,

is computed using the recurrence relation for Wigner-
functions [40] as

(32)

which grows with the degree for given and with following
initial condition for , and

(33)
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