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Abstract—This paper presents a novel sampling scheme on
the sphere for obtaining head-related transfer function (HRTF)
measurements and accurately computing the spherical harmonic
transform (SHT). The scheme requires an optimal number of
samples, given by the degrees of freedom in the spectral domain,
for the accurate representation of the HRTF that is band-limited in
the spherical harmonic domain. The proposed scheme allows for
the samples to be easily taken over the sphere due to its iso-latitude
structure and non-dense sampling near the poles. In addition, the
scheme can be used when samples are not taken from the south
polar cap region of the sphere as the HRTF measurements are
not reliable in south polar cap region due to reflections from the
ground. Furthermore, the scheme has a hierarchical structure,
which enables the HRTF to be analyzed at different audible
frequencies using the same sampling configuration. In comparison
to the proposed scheme, none of the other sampling schemes on
the sphere simultaneously possess all these properties. We conduct
several numerical experiments to determine the accuracy of the
SHT associated with the proposed sampling scheme. We show
that the SHT attains accuracy on the order of numerical precision

when samples are taken over the whole sphere, both in
the optimal sample placement and hierarchical configurations,
and achieves an acceptable level of accuracy when samples
are not taken over the south polar cap region of the sphere for the
band-limits of interest. Simulations are used to show the accurate
reconstruction of the HRTF over the whole sphere, including
unmeasured locations.
Index Terms—2-sphere (unit sphere), head-related transfer

function (HRTF) measurements, sampling, spectral analysis,
spherical harmonic transform, spherical harmonics.

I. INTRODUCTION

T HE head-related transfer function (HRTF) contains spa-
tial information used by the listener to locate the source

of sound and is used in the synthesis of binaural sound [1]–[9].
The HRTF is the ratio of the sound produced by a source to the
sound received at the eardrum of a listener; it quantifies how
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sound waves traveling in a particular direction are altered by
interactions with the listener’s head and torso before reaching
the eardrum. Therefore, the knowledge of the HRTF for a
particular individual enables the illusion of a spatially localized
sound to be created [8], [10], [11]. The HRTF measurements
in the audible frequency range ([0.2,20] kHz) are obtained by
placing speakers (or microphones [12]) on a surrounding sphere
in the far-field of the head (of a human subject or KEMAR
mannequin) at a pre-defined set of longitudes and latitudes [2],
[13]–[16] (see [13] for details of the different experimental
set-ups used to obtain HRTF measurements).
In order to accurately determine the spectral domain repre-

sentation of the HRTF and generate (or reproduce) the spatially
localized sound, it is important to determine sample positions
on the sphere that sufficiently capture the information contained
in the HRTF. For a particular frequency, the HRTF at a con-
stant distance (radius) from the listener is defined on the sphere.
Therefore, the HRTF can be represented in the spectral domain
characterized by spherical harmonics—the natural orthonormal
basis functions on the sphere [17]. The spatial variation in the
HRTF can be captured by a finite number of spherical harmonic
coefficients by choosing a sufficiently large band-limit in the
spectral domain characterized by spherical harmonics, where
the band-limit is proportional to audible frequency [15], [18].
The spectral domain representation ensures the validity of the
HRTF at unmeasured locations [13], [19], which is not theo-
retically guaranteed by other HRTF estimation methods (e.g.,
spline-based interpolation methods [19]). In practice, the spec-
tral domain representation is obtained through the spherical har-
monic transform (SHT) calculated numerically using a finite
number of measurements of the HRTF made over the sphere
[16]. Clearly, how the HRTF measurements are taken over the
sphere is an important research question; the sampling scheme
should allow the accurate computation of the SHT.
In addition to the numerical accuracy, a sampling scheme for

acquiring HRTF measurements should allow for a number of
practical considerations; it is desirable that the number of sam-
ples used in the scheme, defined as the spatial dimensionality
of the scheme, be as small as possible [16], [20]. The HRTF
measurements should be stored in a hierarchical structure that
allows for different audible frequencies to be analyzed using
the same sampling configuration i.e., the position of speakers
(or microphones) on the sphere can remain the same when ob-
taining HRTF measurements for all audible frequencies [16].
Furthermore, it is also desirable that the scheme has an iso-lat-
itude and/or iso-longitude structure, and non-dense sampling
near the poles [16]. Another practical consideration that needs to
be taken into account in the design of the measurement scheme
is that the HRTF measurements from the large south polar cap
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region of the sphere are often not taken, or are unreliable, be-
cause of ground reflections. Also, when designing a sampling
scheme, it should be considered that the precise placement of
speakers (or microphones) may not be possible in practice [14].
Many research groups have proposed different sampling

schemes on the sphere to obtain the HRTF measurements [5],
[6], [14], [16], [18], [19], [21]–[23]. However, none of the
schemes simultaneously support accurate computation of the
SHT and take into account all the practical requirements. With
the consideration of the practical requirements identified from
the experimental set-up and signal processing aspects, such
as smaller spatial dimensionality, hierarchical and iso-lati-
tude/iso-longitude structure, and non-dense sampling near the
poles, the sampling scheme [24] on the sphere has been
favorably proposed in [16] for taking HRTF measurements, in
comparison with the other schemes such as the equiangular
scheme [25], [26], (hierarchical equal-area iso-lat-
itude pixelization) scheme [27] and Gauss-Legendre (GL)
quadrature based scheme [28]. However, the scheme
only allows for the approximate computation of the SHT, where
the approximation improves with a larger number of samples.
We note that the scheme, primarily developed for
cosmological applications [27], although satisfies a number of
practical requirements, only supports approximate computa-
tion of the SHT [16]. On the other hand, the equiangular and
GL-quadrature based schemes [25], [26], [28] which support
the accurate computation of the spherical harmonics require
dense sampling near the poles. Furthermore, these schemes
[26], [28] require twice the optimal number of samples, given
by the degrees of freedom required to represent HRTF in
spectral domain. Regularised least squares methods, such as
the spherical microphone array for beamforming [14], do not
allow for accurate SHT computation and are computationally
intensive.
Recently, the optimal dimensionality scheme proposed in

[20] enables the accurate computation of the SHT using the
optimal number of samples and has non-dense sampling near
the poles. However, the scheme does not have a hierarchical
structure. Finally, we note that the existing schemes, with the
exception of [14] do not allow for measurements not being
taken from a potentially large south polar cap region. Later in
the paper (in Section III), we summarize the requirements for
the sampling scheme on the sphere for acquiring HRTF mea-
surements, review the existing schemes in detail and identify
that none of the existing schemes meet all of the requirements.
In this work, we aim to develop a sampling scheme on the

sphere for taking HRTFmeasurements that achieves the optimal
spatial dimensionality, allows for the accurate and fast compu-
tation of the SHT of the HRTF and also takes into account other
practical considerations. To summarize, our main contributions
in this work are:
• We propose an optimal sampling scheme on the sphere for
acquiringmeasurements of HRTFwith band-limited repre-
sentation in spectral domain. The proposed scheme is hier-
archical, consists of iso-latitude rings of samples with the
flexibility in the placement of samples along longitude, al-
lows for samples to be taken in the spatially-limited region
(that excludes the south polar cap), does not require dense

samples near poles and achieves the optimal spatial dimen-
sionality, given by the degrees of freedom required to rep-
resent band-limited HRTF in spectral domain.

• In the design of the sampling scheme, we develop a method
to determine the placement of iso-latitude rings such that
the SHT can be computed efficiently and accurately. Thus
the proposed scheme and associated SHT enables valid and
accurate representation of HRTF.

• We extensively study the accuracy of the SHT associated
with the proposed sampling scheme for reconstructing any
band-limited signal on the sphere and show that the SHT
is accurate, with reconstruction error on the order of the
numerical precision ( ), for the case when samples are
taken over the whole sphere. For the samples taken over the
spatially limited region, the proposed scheme also provides
sufficient accuracy, with error on the order of , for the
band-limits associated with the representation of the HRTF
in the audible frequency range ([0.2,20] kHz).

• The reconstruction of the HRTF using synthetic measure-
ments, obtained from the spherical head model [29], is
then carried out to show that the proposed method allows
for accurate reconstruction of the HRTF over the whole
sphere, including unmeasured locations, if a large enough
band-limit is used.

The remainder of the paper is organized as follows. The
necessary mathematical background and notation required to
understand this work are contained in Section II. In Section III,
the requirements of a sampling scheme for taking HRTF
measurements and previous sampling schemes are discussed
in greater detail. The proposed sampling scheme and SHT
is presented in Section IV. In Section V, we evaluate the
proposed scheme in terms of the requirements for an HRTF
sampling scheme. Section VI contains synthetic experiments
to objectively evaluate the accuracy of the proposed scheme in
the reconstruction of the HRTF. Finally, concluding remarks
are made in Section VII.

II. MATHEMATICAL PRELIMINARIES

In order to clarify the adopted notation, we present the neces-
sary mathematical background for signals defined on the sphere
and their spectral domain representation. We also briefly review
the representation of the HRTF on the sphere.

A. Signals on the Sphere
Let denote a square integrable complex function on

the unit sphere denoted by . The angles co-latitude
and longitude , where co-latitude is the angle from
the positive -axis and longitude is the angle from the posi-
tive -axis in the - plane (Fig. 1), parameterize a point (

on . The inner product of two
functions and defined on is given by [17]

(1)

where denotes the complex conjugate and is the
differential area element on the sphere. The space of square inte-
grable complex valued functions on , equipped with the inner
product in (1), forms a Hilbert space, denoted by . The
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Fig. 1. Spherical co-ordinate system consisting of co-latitude and longitude
parameterizes a point on the unit sphere .

inner product in (1) induces a norm . We refer
to functions with finite induced norm as signals on the sphere.

B. Spherical Harmonics and Spectral Domain Representation
TheHilbert space is separable and spherical harmonic

functions (spherical harmonics for short) form a complete
orthonormal set of basis functions [17]. Spherical harmonics

for integer degree and integer order
are defined as [17], [30]

(2)

where are the associated Legendre functions (with
Condon-Shortley phase included) [17], [30].
Due to completeness of spherical harmonics, any signal

can be expanded using spherical harmonics as

(3)

where denotes the spherical harmonic coefficient of de-
gree and order , and is calculated using the spherical har-
monic transform (SHT), given by

(4)

We note that the spherical harmonic coefficients form the
spectral domain representation of the signal. We refer to the re-
construction of signal on the sphere from its spectral domain
representation (spherical harmonic coefficients), given in (3),
as the inverse SHT.
The signal is said to be band-limited at degree
if . The set of all band-lim-

ited signals forms a subspace of denoted by . For
the expansion of band-limited signal using spherical
harmonics, as given in (3), the summation over degree is trun-
cated at .

C. Head Related Transfer Function (HRTF)
The HRTF at a particular frequency and distance from the lis-

tener is naturally defined on the sphere. Let denote
the HRTF at a fixed distance from the listener with wavenumber

, where denotes the audible frequency and is the

speed of sound propagation [15]. For each , the HRTF can be
represented as a band-limited function on the sphere and there-
fore can be expressed, using the inverse SHT, as

(5)

where the spherical harmonic coefficients are ob-
tained using the SHT given by

(6)

The band-limit is related to the wavenumber (or fre-
quency ) and the scattering object size (typically the radius
of the human head) through [15], [16]

(7)

We note that the band-limit for maximum audible
frequency kHz [15], [16]1. We further analyze the rela-
tion between the band-limit and the wavenumber given in (7) in
Section VI-A.

III. HRTF ANALYSIS PROBLEM

A. Sampling Scheme Requirements
For the accurate spatial domain representation and spectral

domain analysis of the HRTF, we are required to accurately de-
termine the spherical harmonic coefficients given in (6) using
the HRTF measurements. In addition to the numerical accuracy,
a sampling grid designed for obtaining HRTF measurements
should take into account a number of practical considerations
[16], [24], [27]. For example, the number of sampling points,
known as the spatial dimensionality, should be as small as pos-
sible, in order to reduce acquisition cost and time [13].
Since the number of spherical harmonic coefficients

for the band-limited representation of HRTF in (5)
is , the optimal spatial dimensionality, denoted by ,
attainable by any sampling scheme that supports accurate com-
putation of the SHT is [15]. Thus, in order to
synthesise the HRTF over the entire audible frequency range, a
minimum of samples are required. It is also
desirable that a scheme does not require dense sampling near
the poles to facilitate the acquisition of HRTF measurements
near the poles [16], [24], [27]. The scheme should also have a
hierarchical structure, with low spatial resolution data for lower
audible frequency HRTF embedded in the high spatial resolu-
tion data that is used for HRTF with higher audible frequency,
allowing for all frequencies in the audible range to be analyzed
using the same sampling configuration [24], [27]. Since the ex-
perimental set-up to take HRTFmeasurements requires the rota-
tion of either the sound source or receiver or both, it is desirable
to have a scheme with an iso-latitude and/or iso-longitude struc-
ture as this results in the least number of rotations required to

1Even if the effect of the torso is taken into consideration and its radius is
used, the torso only contributes to the HRTF at frequencies less than 3 kHz and
at frequencies above 3 kHz the radius, , is that of the head [15], [31]. Hence
the maximum band-limit, , is valid for HRTF at all frequencies.
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collect measurements. With these considerations, the sampling
scheme on the sphere for HRTF measurements should satisfy
the following requirements:
(R1) Small spatial dimensionality
(R2) Non-dense sampling at the poles
(R3) Hierarchical structure of measurements
(R4) Iso-longitude and/or iso-latitude
(R5) Support an accurate SHT
(R6) Efficient computation of the SHT
Moreover, we also take into account two more important

practical considerations in the design of sampling scheme.
First, we note that the precise placement of speakers (or mi-
crophones) along longitude may not be possible for obtaining
HRTF measurements [32], [33]. If measurements are obtained
one co-latitude at a time and the azimuth varied, as for the
measurement procedure described in [33], then sample location
accuracy is a problem around longitude, not co-latitude; it
is therefore necessary to have a scheme where the location
of samples is flexible along longitude. Second, the HRTF
measurements are usually unavailable at elevations lower than
about 140 due to ground reflections and limitations of the
measurement apparatus [2], [15]. Hence, it is also desirable
that the sampling scheme allows for accurate computation of
the SHT when samples are not taken from the south polar cap
region ( ) of the sphere. We append these two practical
requirements for the sampling scheme to the list:
(R7) Flexibility in the placement of samples
(R8) Allow sampling over the spatially limited region
The requirements (R1)–(R5) have been considered in [16]

for the evaluation of different sampling schemes on the sphere.
However, the sampling schemes for obtaining HRTF mea-
surements have not been evaluated against the requirements
(R6)–(R8) in the existing literature.

B. Prior Work

In the literature, many sampling schemes on the sphere
have been proposed for the analysis and the acquisition of
measurements of the HRTF (e.g., [5], [6], [14], [16], [18], [19],
[21]–[23]). In [16] four sampling schemes: equiangular grid,
GL sampling, and , were compared against
four of the requirements, (R1)–(R4), listed in Section III-A.
Here we evaluate schemes that allow analysis of the HRTF
using spherical harmonics, including those mentioned above,
against the eight listed requirements (R1)–(R8) to determine
the suitability of the schemes for taking HRTF measurements.
We first consider the equiangular and GL quadrature based

schemes, which support exact computation of the SHT of a
signal on the sphere band-limited at . Driscoll and Healy
proposed an exact method to compute the SHT exploiting an
equiangular sampling scheme, which consists of equian-
gular spaced iso-latitude rings, where each ring consist of

sample points along longitude. Thus, the spatial di-
mensionality of the Driscoll and Healy sampling scheme is
approximately points. Instead of placing rings along
longitude, the GL quadrature on the sphere [28], [34] can be
used to develop a sampling scheme on the sphere that requires

iso-latitude rings, where the placement of rings is dictated
by the roots of Legendre polynomials of degree . Recently,
McEwen and Wiaux, through periodic extension of a sphere to
a torus, proposed an equiangular sampling scheme and associ-
ated exact SHT, which also requires iso-latitude equiangular
spaced rings. It is noted that the spatial dimensionality for both
the McEwen and Wiaux, and GL quadrature based sampling
schemes is on the order of , with the McEwen and Wiaux
scheme requiring fewer samples than the GL quadra-
ture based scheme. Due to the iso-latitude and iso-longitude
nature of the equiangular and GL quadrature based schemes,
less rotations of the source and/or receiver are required for
obtaining HRTF measurements than schemes that do not
possess this property. Also, the iso-latitude structure in these
schemes enables the efficient computation of the SHT through
a separation of variables approach [25], [35]. In these schemes,
the samples in each iso-latitude ring are equally spaced,
which allows for the fast Fourier transform (FFT) to be used
for efficient computation of the SHT. If the samples along each
ring are not equally spaced, the SHT can also be computed
accurately using the non-uniform discrete Fourier transform
(NDFT) instead of the FFT, as long as the number of samples
is . Thus, these schemes could offer flexibility in the
placement of samples along longitude in each ring. However,
these schemes have a major drawback that they require dense
sampling at the poles and hence are not commonly used for
measuring HRTFs. We note that the equiangular sampling
schemes satisfy the requirements (R4)–(R7), but fail to satisfy
the first three requirements (R1)–(R3). It can be observed that
the equiangular schemes are not fully hierarchical in nature
as the sampling along co-latitude does not consist of the
same sample point locations for different spatial resolutions.
Among the equiangular and GL quadrature based schemes,
the McEwen and Wiaux equiangular sampling scheme is most
suitable for HRTF measurement as it has the smaller spatial
dimensionality.
We also review the 2 [27] and 3 [24] sampling

schemes which compute the SHT using approximate quadra-
ture. The scheme consists of sample points obtained
by partitioning the sphere into equal surface area subregions
[27]. It has been noted in [16] that the scheme only
meets the requirements (R2) and (R3). The scheme is
derived from the equiangular sampling method but, unlike the
equiangular method, the scheme can be used to achieve
near equal-area division with no dense sampling near the poles
[24]. Although iso-longitude sampling occurs in subregions, the

sampling scheme is not iso-longitude over the whole
sphere. The scheme can also be hierarchical, although
there is a trade-off between the hierarchy and pixel distortion
which affects the accuracy of the SHT. The scheme with
12 base regions and 3:6:3 equal-area division configuration of-
fers the best compromise between pixel distortion and hierarchy
[24]. For the detailed comparison of the scheme with
the and equiangular schemes, we refer the reader to

2http://HEALPix.jpl.nasa.gov/
3http://www.mrao.cam.ac.uk/projects/cpac/igloo/
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TABLE I
COMPARISON OF DIFFERENT SAMPLING SCHEMES ON THE SPHERE FOR OBTAINING HRTF MEASUREMENTS

[16], where it has been reported that the scheme is the
most suitable scheme for HRTF measurement and analysis as
it satisfies the requirements (R1)–(R4). We note that the
scheme, although supports the efficient computation (require-
ment (R6)) of the SHT through a separation of variables, has
an associated SHT that is not accurate. Furthermore, the spatial
dimensionality of the scheme is not related to the HRTF
band-limit, and using a larger spatial dimensionality results
in a greater accuracy of the SHT. The spatial dimensionality of
the scheme is larger than , even when the reconstruc-
tion error (the error between measured HRTF and synthesized
HRTF) is of the order [16].
A number of sampling schemes used in HRTF analysis use

least squares to calculate the spherical harmonic coefficients. In
[14], Li and Duraiswami propose a flexible spherical grid for the
design of spherical microphone array for beamforming, herein
referred as beamforming grid. This beamforming grid requires
the optimal number of points , allows for flexibility in the
placement of samples and spatially limited sampling. However
it does not meet any of the other requirements; the structure of
the grid is irregular, therefore not iso-longitude or iso-latitude
and may have dense sampling at the poles [16]. In [19], regu-
larised least squares is used to calculate the spherical harmonic
coefficients on open grids (where samples are not taken over the
whole sphere), which allows the reconstruction of HRTFwith an
accuracy within 5% of the ground truth data. Furthermore, the
regularised least squares method of computing spherical har-
monics only allows approximate computation of the spherical
harmonic coefficients and is also computationally intense; least
squares has computational complexity .
Recently a scheme which has optimal spatial dimensionality
and supports accurate computation of the SHT has been de-

veloped [20]. The scheme requires iso-latitude rings and only
, , samples along each ring. However,

the optimal dimensionality scheme does not meet requirements
(R3), (R7) or (R8). Out of the existing sampling schemes, only
that proposed by Li and Duraiswami has been designed to allow
for spatially limited sampling, with samples not being taken over
the south pole region.We summarize the comparison of different
sampling schemes in Table I, where the number of samples re-
quired for each scheme for the maximum audible frequency of
20 kHz (corresponding to the band-limit ) is shown. The
number of samples for the and schemes are re-
ported in [16] and result in reconstruction errors on the order of

and respectively. If a band-limit is used,
in order accurately represent HRTF, the number of samples in-
creases for all of the sampling schemes that allow accurate com-
putation spherical harmonic transform.

C. Problem Statement and Contributions
In summary, there exists sampling schemes on the sphere,

which satisfy some of the desired properties for HRTF mea-
surement, the equiangular scheme of McEwen and Wiaux, the

and the optimal dimensionality schemes in particular.
However, to our knowledge, no scheme exists that meets all
of the eight listed requirements. The main contribution of this
paper is the design of a sampling scheme on the sphere for HRTF
analysis which meets all of the eight requirements (R1)–(R8)
listed earlier in Section III-A, as reported in Table I. For the
proposed sampling scheme, we also develop a fast and accurate
algorithm for the computation of the SHT.

IV. PROPOSED SAMPLING SCHEME AND SPHERICAL
HARMONIC TRANSFORM

For HRTF analysis and reconstruction, we here propose a
sampling scheme and develop the associated SHT. We then
evaluate the proposed sampling scheme in terms of the orthonor-
mality of the spherical harmonics evaluated over the proposed
grid.

A. Proposed Sampling Scheme—Structure
We propose an iso-latitude sampling grid, denoted by ,

where samples are taken over iso-latitude rings. The locations
along where the iso-latitude rings are placed are stored in the
vector defined as

(8)

The ring placed at each is composed of samples along
longitude . Let denote a vector of sampling points
along in the ring placed at each , where

(9)

The vectors and describe the structure of the sampling
scheme . However, we have not yet presented the location
of these sample points. The most intuitive and simple choice of
sample locations is to place the rings of samples equally along
, with the rings with more samples along placed nearer to the
equator ( ), and have the samples in each ring equally
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spaced along [20]. As an example, Fig. 2 shows this simple
sampling arrangement for a band-limit . Such a placement
of samples does not result in a hierarchical sampling scheme,
nor provide flexibility in choosing sample locations. We first
develop the SHT and inverse SHT for the proposed structure of
the sampling scheme. We later provide details about the place-
ment of the samples, that is, we design the vectors and for
each such that the sampling scheme meets
the requirements (R1)–(R8).

B. Spherical Harmonic Transform
We here present a SHT4 to compute the spherical harmonic

coefficients of a signal band-limited at and sampled
over the sampling grid .
For order , we define an indexed vector as

(10)

which consists of the last points in the vector .
By defining a vector

(11)
with

(12)

for each order and each , where

(13)
denotes scaled associated Legendre functions, and a matrix
as

...
...

. . .
...

(14)

a vector composed of spherical harmonic coefficients with
order

(15)

4We follow the formulation of the SHT presented in [20].

Fig. 2. Simple sampling arrangement for measuring a signal on the sphere
band-limited at (a) north pole view (b) south pole view.

can be computed by inverting the system

(16)

for each .
Using the formulation of the system in (16), the spherical har-

monic coefficients of order contained in a vector
can be computed accurately, provided the following two prereq-
uisites are satisfied [20]:
(P1) or equivalently given in (12) for each

is accurately computed
(P2) must be chosen such that can be accurately

inverted
For the placement of samples in the proposed scheme ,

we use these conditions as guidelines to design given in (8)
and given in (9) for all .

C. Inverse Spherical Harmonic Transform
The inverse SHT computes the signal from its spherical har-

monic coefficients. Using the separation of variables technique,
changing the order of summation in (3) and using (12), the in-
verse SHT can be expressed as

(17)

where is given in (12). For the proposed sampling
scheme, the inverse SHT can be computed by adopting the
inverse SHT procedure proposed in [20].

D. Proposed Sampling Scheme—Design
For each , the univariate signal along

can be made band-limited at , given the complex ex-
ponentials as basis functions along [20]. Since there at
least number of points in each of the rings placed at

, can be computed accurately (prerequisite
P1) by evaluating the integral in equation (12) as a summation
using the NDFT. If the samples along are equally spaced, that
is,

(18)

the FFT can be used to compute for each .
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Fig. 3. (a) Sample positions obtained by applying steps 1 to 4 of the optimal sample placement method for and (b) samples on the sphere
and (c) the condition number of the matrix for .

In addition to accurately computing , we also require
to be chosen such that is well-conditioned in order for

the accurate computation of the SHT (prerequisite P2). This
places a constraint on the location of the rings along . Fur-
thermore, we also consider that the samples along co-latitude
to be taken over , which indicates that the samples
are not taken over the south polar cap region of central angle

. When , the samples are taken over the whole
sphere. Therefore, we have two parameters in the design of sam-
pling scheme; the band-limit and specifying the sampling
region. In order to choose sample positions along co-latitude,
we iteratively construct the vector given in (8). We assume
that we have equally spaced points along co-latitude
over 5. Since the ring at contains only one
sample, the natural choice to place such a ring is (north
pole). We then choose from given points such that the
condition number (ratio of the largest eigenvalue to the smallest
eigenvalue) of thematrix is minimized. Similarly, we choose

. Once we determine samples along co-lati-
tude, we use the condition number minimisation method [20] to
reorder these samples to form a vector such that the matrix

for each becomes better-conditioned. We refer to
this procedure as the optimal samples placement method, which
is summarized as follows:
Step 1: Choose equiangular spaced points along

co-latitude over .
Step 2: Set .
Step 3: For each , choose such from

the remaining samples, which minimizes the
condition number of the matrix .

Step 4: Apply the condition number minimization method
[20] to reorder the sample points along co-latitude
to form a vector .

Step 3 is used to select locations in a vector along co-lat-
itude (for the placement of iso-latitude rings) by ensuring that
the matrix , which depends on all of , is
well-conditioned. This is a particularly important step for the
sampling configuration when the samples are not taken over the
whole sphere. Step 4 is then carried out to ensure that the matrix

is well-conditioned for each order . Step 4 is
necessary as the associated Legendre functions are close to zero

5If measurements are unavailable at some locations along , then these can
be excluded from the points available.

around the poles for large , so it is more likely that the
matrices may become ill-conditioned for large [20].
As an illustration, we obtain the sample points by carrying

about the above four steps for and (whole
sphere). The sample points along co-latitude in a vector are
shown in Fig. 3(a) along co-latitude and in Fig. 3(b) over the
sphere. The condition number of the matrix constructed
using samples for different values of is plotted in
Fig. 3(c). The condition number of each of the matrices is
small, that enables the accurate computation of the SHT.We an-
alyze the accuracy achieved by the proposed sampling later in
the paper. We note that the optimal value of samples in a vector
using the proposed optimal samples placement method are re-

quired to be computed once only for each and each . Once
computed, , which describes the structure of the proposed sam-
pling scheme , can be stored for use in the computation of
the SHT.

E. Proposed Sampling Scheme–Orthonormality Error Analysis
Here we briefly study the accuracy of the proposed SHT; de-

tailed accuracy analysis is carried out in the next section. We
conduct a numerical experiment to validate the orthonormality
relation . In our experiment,
we generate the spherical harmonic function on the
grid and compute the spherical harmonic transform to
determine the spherical harmonic coefficients for each

and . We compute the or-
thonormality error , defined as

(19)

for all and and
(the band-limit that corresponds to the maximum audible
frequency of 20 kHz). The orthonormality error is plotted
as in Fig. 4(a) and Fig. 4(b) for

(samples over whole sphere) and (samples
are taken over a spatially limited region that excludes the south
pole), respectively. It can be observed that orthonormality
errors are much smaller in comparison to the schemes that
have an approximate SHT, indicating that the proposed scheme
will permit higher reconstruction accuracy. For example, the
IGLOO scheme has orthonormality errors on the order of
and for the samples taken over the whole sphere and over
the spatially limited region respectively [16].
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V. ANALYSIS OF PROPOSED SAMPLING SCHEME AND
SPHERICAL HARMONIC TRANSFORM

In this section we evaluate the proposed sampling scheme and
associated SHTs against the requirements (R1)–(R8). We im-
plement the proposed SHT in . In order to speed up the
computation, the three term recursion relation [20], [35], [36]
is implemented in C language to compute the scaled associated
Legendre function for given , and .We
note that the three term recurrence relation, adopted here, that
grows with degree for each and is a natural choice for
our implementation since we are required to compute the ma-
trix for each .

A. Number of Points

The total number of samples in the proposed sampling
scheme are

(20)

which also represents the number of coefficients required for
the representation of band-limited HRTF in the spectral domain.
Thus, the sampling scheme has the optimal spatial dimen-
sionality, attainable by any sampling scheme that supports ac-
curate computation of the SHT.

B. Non-dense, Hierarchical, Iso-latitude Sampling Scheme

By design, the samples in the proposed sampling scheme
, characterized by and , respectively given in (8) and

(9), do not partition the sphere into equal-area regions. How-
ever, the proposed scheme does not require significant dense
sampling near the poles as compared to the equiangular sam-
pling schemes [25], [26].
Furthermore, the proposed sampling scheme can be made

fully hierarchical. The SHT of a band-limited signal at some
degree can be computed by taking the number
of measurements over the higher resolution sampling scheme

. For the computation of the SHT of a signal band-limited
at some degree , we determine the ring positions
for from the scheme designed for

with the consideration that (i) the ring at in the scheme
at least contains sample points along longitude

and (ii) each is chosen closest to the ring of sample
points along longitude in the grid . Once the rings are
chosen from the sampling scheme , the points along
longitude in the ring placed at each are chosen such that
the samples are maximally spaced. We note that samples over
the rings are different from the samples in the
sampling scheme , optimally designed for band-limit .
Therefore, the use of the higher resolution spatial grid for
obtaining the low resolutionmeasurements of a signal band-lim-
ited at does not guarantee the accuracy of the SHT as the
matrix may not be well-conditioned for each . However,
we later show that the SHT can be computed with sufficient ac-
curacy for the band-limits in the range for the
case when the hierarchical structure of the proposed sampling
is exploited. Therefore, all frequencies in the audible frequency

Fig. 4. Orthonormality error (19) is plotted as
(a) over the whole sphere, and (b) over

the spatially limited region .

range ([0.2,20] kHz), corresponding to band-limits , can
be analyzed using the same sampling configuration.
The proposed sampling scheme is naturally iso-latitude. This

property allows HRTF measurements to be taken with fewer
number of rotations of either the sounds source or human subject
or both. Since the proposed sampling scheme does not restrict
the samples in each ring to be equally spaced, the number of
rotations can also be further reduced by placing the number of
samples in each ring such that the samples along in different
rings become iso-longitude.

C. Numerical Accuracy Analysis

The primary objective to design the sampling scheme on the
sphere is to enable the computation of the SHT of the HRTF
(a band-limited signal) from its measurements. The accuracy of
the SHT is therefore the most important requirement. We carry
out comprehensive accuracy analysis of the proposed sampling
scheme and the associated SHT. We note that the analysis car-
ried out in this section is valid for any band-limited signal on
the sphere. In Section VI analysis is carried out on HRTF data
so is only valid for the HRTF signal.
1) Accuracy Test: A sampling scheme is numerically accu-

rate if the SHT of a band-limited signal followed by the inverse
SHT results in an error between the original and resultant signal
that is on the order of the numerical precision [20]. In order to
evaluate the accuracy of the SHT associated with our sampling
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scheme, we carry out the following experiment: we generate a
complex valued band-limited test signal over the pro-
posed sampling grid , where the complex value of each
sample is randomly chosen with real and complex components
from a uniform distribution on the interval . The SHT fol-
lowed by the inverse SHT is applied on the signal, resulting in
the reconstructed signal . We repeat this experiment 10 times
and calculate the average values for the maximum and mean
error between the original and reconstructed signal. The max-
imum reconstruction error and mean reconstruction error

are defined as

(21)

(22)

2) Sampling Scheme Configurations: We carry out the nu-
merical accuracy experiment for the band-limits in the range

and for the following four different configurations
of the sampling scheme:
(C1) ; the samples along co-latitude are distributed

over the whole sphere and samples along longitude in
each ring are equally spaced as given in (18). Then the
FFT can be used along iso-latitude samples in each ring
to compute given in (12).

(C2) ; the samples along co-latitude are distributed
over the whole sphere and samples along longitude in
each ring are not equally spaced. As indicated earlier,
the HRTF measurements may not be taken exactly at the
longitude specified in (18); it is therefore necessary to
analyze the accuracy of the proposed scheme with re-
spect to variation in the sampling locations along lon-
gitude. Hence, we alter the sampling configuration used
above, such that a small random component is added
to the sample locations along longitude, ,, that is,

(23)
We take to be normally distributed with zero mean
and standard deviation , where is the
number of samples in a ring placed at and quan-
tifies the standard deviation of sample locations from
their designed location. Since the ring with fewer sam-
ples offers more flexibility in the placement of a sample
away from its assigned location, we make the standard
deviation inversely proportional to the number of
samples in ring .

(C3) ; the samples along co-latitude are distributed
over the whole sphere. The sampling grid is cre-
ated for a signal band-limited at . Samples for
signals band-limited in the range are then
selected from this grid to form as described in
Section V-B. This configuration utilizes the hierarchical
nature of the scheme.

(C4) ; the samples along co-latitude are distributed
over the spatially limited region. For simplicity, the sam-

ples along longitude in each ring are equally spaced as
given in (18).

3) Results: We carry out the numerical accuracy test for each
of the four sampling configurations (C1–C4). Since NDFT is
required to be used to compute given in (12) for con-
figuration (C2), in order to be consistent, the SHT is computed
using the NDFT rather than the FFT for all of the four configura-
tions. We record the max error and the mean error ,
given by (21) and (22), respectively.
The errors and are plotted in Fig. 5(a) for con-

figuration (C1). Although the errors grow with band-limit 6,
the errors are still on the order of numerical precision for band-
limits . Furthermore, it can also be observed that the er-
rors increase as the band-limit increases due to the computa-
tional flow of the SHT which causes the reconstruction errors to
accumulate as spherical harmonic coefficients are sequentially
calculated, for [20]. The errors
and for configuration (C2) are plotted in Fig. 5(b) for
standard deviations with constants and . It is ev-
ident that the errors are on the order of numerical precision for

. It can also be noted that a smaller standard deviation
results in a more accurate computation of the SHT. This is due
to the fact that the larger standard deviation increases the max-
imum distance between neighboring samples which results in
the sampling (locally) at a rate less than the Nyquist rate. For
the configuration (C3), where the sampling grid designed for

is used to obtain samples for calculating the SHT for
, the errors and , plotted in Fig. 5(c),

are slightly larger than the errors for configuration (C1) shown
in Fig. 5(a), due to the samples not being optimally selected for
band-limit . However, the errors are both on the order of nu-
merical precision for all band-limits .
For the configuration (C4), when the samples are not taken

over co-latitude greater than , the errors and
are plotted in Fig. 6(a). As predicted from the results

of the orthonormality error analysis in Section IV-E, it can be
observed that the errors grow at a greater rate in comparison
to the errors when samples are taken over the whole sphere
(configurations (C1)–(C3)). This is because the matrices
are not as well-conditioned when samples are taken from a
spatially limited region on the sphere, which can be observed
in Fig. 6(b), where we plot the maximum condition number

for configurations (C1) and (C4), which clearly
shows that is larger for the configuration (C1) than
(C4). Nevertheless, the errors for the configuration (C4) are
on the order of , or smaller, for band-limits of interest in
HRTF analysis ( ).
Our numerical accuracy analysis demonstrates that the pro-

posed sampling scheme allows the computation of SHT of any
band-limited signal on the sphere that has a band-limit up
to and beyond the band-limits commonly considered in HRTF
analysis with sufficient accuracy for all of the configurations.
If the HRTF is indeed band-limited then the proposed scheme
will enable the HRTF to be accurately reconstructed over the

6It is expected for and to monotonically increase with , how-
ever in Fig. 5 there are local minima andmaxima present. This numerical artifact
is a result of the two condition minimisation methods described in Section IV-D.
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Fig. 5. Numerical accuracy analysis: plots of the maximum error and
the mean error , respectively given in (21) and (22), for band-limits in
the range and for the sampling configurations; (a) C1:
and samples equally spaced around rings as given in (18), (b) C2: and
samples not equally spaced around rings as given by (23) and (c) C3: ,
rings taken from the ring locations in the sampling scheme designed for
for .

whole sphere. Thus, the proposed sampling scheme satisfies the
requirements of allowing for flexibility in the placement of sam-
ples (R7), samples not being taken over the south polar cap re-
gion (R8) and having hierarchical structure (R3).

D. Computational Complexity Analysis
Here, we analyze the computational complexity of the SHT

and inverse SHT for the proposed sampling scheme de-
signed to represent/measure the signal band-limited at . Fol-
lowing the formulation of the SHT, we first compute for each
, which can be computed either using the FFT (when samples

in each iso-latitude ring are equally spaced) or the NDFT, with
complexity or respectively. The matrix
can be computed with complexity for each using the
three term recurrence relation to compute the scaled associated
Legendre function [20]. The computation of requires
solving the system in (16), which can be carried out naively
using the least squares approach with complexity . How-
ever in practise, the system in (16) can be solvedmore efficiently
by employing fast algorithms. For example, the system of size
can be solved in , instead of , using the al-

gorithm of [37]. These operations are required to be repeated
for each , which is of the order , therefore, the complexi-
ties mentioned above are scaled by and therefore the overall
asymptotic complexity of the SHT transform scales as .
The dominant factor is due to the inverting of system in
(16) and the use of the NDFT for the case when samples are not
equally spaced around , which can be more efficiently imple-
mented in practice [38], [39] and we demonstrate in this section
that the complexity of the SHT transform scales close to
in practice. If the inverse matrices (or pseudo-inverse)
for all and matrices required in the computation of the
NDFT are pre-computed, the theoretical complexity reduces to

. We note that the pre-computation of these matrices re-
quire storage of the order , which is manageable for the
band-limits used in HRTF analysis. In our implementation of the
SHT, we use on-the-fly computation of these matrices. Since the
inverse SHT in (17) is formulated by exploiting the iso-latitude
structure of the proposed sampling scheme that enables a sepa-
ration of variables (contribution of complex exponentials along
and associated Legendre functions along ), the inverse SHT

can be computed with computational complexity [20].
We measure the computation time to carry out the proposed

SHT for the configurations (C1) and (C2), where we use FFT
and NDFT, respectively, to compute . The time taken to com-
pute the SHT of the complex band-limited test signal for
band-limits is recorded and averaged over 10 test
signals for each of the configurations (C1) and (C2). The ex-
periment is performed using MATLAB running on a machine
equipped with 3.4 GHz Intel Core i7 processor and 8 GB of
RAM. The computation time in seconds, denoted by , for each
configuration is plotted in Fig. 7, where it can be seen that for
each configuration is always less than 1 second and scales closer
to than .

VI. EVALUATION OF PROPOSED SAMPLING SCHEME AND
SPHERICAL HARMONIC TRANSFORM
USING SPHERICAL HEAD MODEL

Here we evaluate the accuracy of our method for the recon-
struction of the HRTF on the sphere. We use the spherical head
model [29] to obtain synthetic HRTF data for the following pa-
rameters: head radius m with measurements taken
over a sphere at a distance of m from the head. This model
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Fig. 6. (a) Plot of the maximum error and the mean error , respectively given in (21) and (22), for band-limits in the range for the
sampling configuration (C4): and samples equally spaced around rings, and (b) the maximum of the condition number, for
band-limits for configurations (C1) and (C4). Note that is much larger for (C4) than for (C1). In (a) and for the maximum
band-limit of interest in HRTF analysis ( ) are shown by the red dotted lines.

Fig. 7. The computation time in seconds to carry out the SHT for band-limits
in the range and for the configurations (C1) and (C2), where we
use the FFT and the NDFT, respectively, to determine in the computation
of the SHT. Note that both scale closer to that due to the use
of efficient techniques for inverting the matrix system. The and
scaling is shown by solid and dashed red lines (without markers) respectively.

also requires a threshold level at which the spherical Hankel
functions are calculated to be specified; we set the threshold at

(machine precision).

A. HRTF Band-limit Analysis

In the literature [1], [15], [18], the HRTF band-limit in the
spherical harmonic basis is often taken to be given by (7)
( , where the wavenumber is directly pro-
portional to frequency ), resulting in a maximum band-limit
of at the highest audible frequency kHz.
Since the proposed sampling scheme permits accurate compu-
tation of SHT of any band-limited signal as demonstrated in
Section V-C, the proposed scheme will enable the HRTF to be
accurately reconstructed over the whole sphere provided the
HRTF is indeed band-limited. Before attempting to analyze the
accuracy of the HRTF reconstruction, it is therefore important
to verify that the signal is indeed band-limited as related by (7).

Fig. 8. The energy spectrum , given in (24), of the HRTF is plotted in
logarithmic scale as for spherical harmonic degrees
and all frequencies in the audible range. The black dashed line indicates
the band-limit (maximum degree) given in (7) as a function of
wavenumber (or frequency).

In order to determine the band-limit of the synthetic
HRTF, we compute the HRTF spherical harmonic coefficients

up to from the synthetic measurements that
are obtained using the spherical head model over the (C1) sam-
pling configuration described in Section V-C2. For different
frequencies over the audible range, we compute the energy
spectrum , defined as

(24)

which is plotted in logarithmic scale in Fig. 8, where it is evident
that the HRTF is indeed a band-limited function, with
becoming very small at higher degrees. We have also indicated
the band-limited given by (7) as dashed line in Fig. 8. Al-
though the energy spectrum decreases sharply after the
band-limit given by (7), there is still considerable energy con-
tributed by higher degree spherical harmonics. Therefore, using
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Fig. 9. Reconstruction error given in (25) of the HRTF on the
sphere at (a) kHz with and (b) kHz with , where
the band-limit is calculated using (7).

the band-limit given by (7) will result in truncation error, which
can be reduced by using a larger band-limit, as we demonstrate
in the next section.

B. HRTF Reconstruction Accuracy Analysis

In order to evaluate the numerical accuracy of the proposed
scheme in the reconstruction of the HRTF over the whole
sphere, not just at locations where measurements have been
obtained, we conduct a following experiment:
• For a given frequency , synthetic measurements of the
HRTF are obtained over the sampling grid

with (C1) sampling configuration described in
Section V-C2.

• Compute spherical harmonic coefficients using
the proposed SHT.

• The spherical harmonic coefficients are used to
reconstruct the HRTF over a very high resolution equian-
gular grid (consisting of 197192 points).

Fig. 10. Reconstruction error given by (25) of the HRTF on the
sphere using larger band-limits at (a) kHz with and (b)

kHz with .

We compute the error between the reconstructed
HRTF and the analytical value of the HRTF

obtained from the spherical head model, given by

(25)

which is plotted in Fig. 9(a) and Fig. 9(b) for kHz and
kHz, respectively. Here we have used and
for kHz and kHz, respectively, as dic-

tated by (7). We also determine the error , plotted in
Fig. 10, for higher band-limits, that is, and for

kHz and kHz, respectively. As expected from our
above analysis of the HRTF band-limit, the reconstruction accu-
racy greatly improves with a higher band-limit, due to reduced
truncation error. This demonstrates that the proposed scheme
can be used to accurately reconstruct the HRTF over the entire
sphere, provided that a suitable band-limit is used. Determining
the suitable band-limit, that allows HRTF reconstruction to an
accuracy on the order of numerical precision, is worth further
investigation, however, is beyond the scope of this work. The
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reconstruction error is of the same order of magnitude over the
whole sphere, demonstrating that the proposed scheme allows
sufficiently accurate interpolation of the HRTF at unmeasured
locations.

VII. CONCLUSIONS
We have proposed a new sampling scheme on the sphere and

developed a computationally efficient SHT for the accurate rep-
resentation and spectral domain analysis of the HRTF. In com-
parison to the previous sampling schemes, we have shown that
the proposed scheme satisfies all practical and processing re-
quirements. The scheme attains optimal spatial dimensionality
as it requires the optimal number of samples, that is equal to the
number of degrees of freedom in harmonic space, for the accu-
rate computation of the SHT. In addition, the proposed scheme
is non-dense near the poles and is iso-latitude, allowing for the
measurements to be more easily obtained. Furthermore, the pro-
posed scheme can be configured as fully hierarchical which en-
ables the HRTF to be analyzed at all frequencies in the audible
range using the same arrangement of speakers (or microphones).
We have conducted numerical experiments to show the recon-

struction accuracy of any band-limited signal on the sphere for
band-limits of interest in HRTF analysis for four different con-
figurations of the sampling scheme. Errors on the order of ma-
chine precision are obtained for the configurations where sam-
ples are taken over the whole sphere, demonstrating that the
scheme allows for flexibility in the placement of samples along
longitude and has a hierarchical structure. An acceptable recon-
struction error can be obtained when samples are taken from a
spatially limited region (excluding south polar cap region) on
the sphere. We also show that the SHT can be carried out with
manageable computational complexity. Simulations have been
carried out to show that the proposed sampling scheme and SHT
allows for accurate reconstruction of the HRTF over the whole
sphere, including unmeasured locations, provided that a suit-
able band-limit is chosen. The future work includes the use of
the proposed scheme for the acquisition of HRTFmeasurements
and further investigation into improving the numerical accuracy
for the configuration when samples on the sphere are not taken
from the south polar cap region.
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