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Abstract

This thesis is focussed on the development of new signal processing techniques to
analyse signals defined on the sphere. Analysis and processing of signals defined
on the sphere find applications in various fields of science and engineering, such
as cosmology, geophysics and medical imaging. The objective to develop new sig-
nal processing methods is served by formulating, extending and tailoring existing
Euclidean domain signal processing theories in ways that they become suitable for
analysis of signals defined on the sphere.

The first part of this thesis develops a new type of convolution between two
signals on the sphere. This is the first type of convolution on the sphere which
is commutative. Two other advantages, in comparison with existing definitions in
the literature, are that the new convolution admits anisotropic filters and signals
and the domain of the output remains on the sphere. The spectral analysis of the
convolution is provided and a fast algorithm for efficient computation of convolution
output is developed.

The second part of the thesis is focused on the development of signal processing
techniques to analyse signals on the sphere in joint spatio-spectral (spatial-spectral)
domain. A transform analogous to short-time Fourier transform (STFT) in time-
frequency analysis is formulated for signals defined on the sphere, in order to devise
a spatio-spectral representation of a signal. The proposed transform is referred as
the spatially localized spherical harmonic transform (SLSHT) and is defined as
windowed spherical harmonic transform, resulting in the SLSHT distribution. The
properties of the SLSHT distribution and its analysis in the spherical harmonic
domain are also provided. Furthermore, examples are provided to demonstrate
the capability of SLSHT to reveal spatially localized spectral contents in a signal
that were not obtainable from traditional spherical harmonics analysis. With the
consideration that data-sets on the sphere can be of considerable size and the

SLSHT is intrinsically computationally demanding depending on the band-limits
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of the signal and window, a fast algorithm for the efficient computation of the
transform is developed. The floating point precision numerical accuracy of the fast
algorithm is demonstrated and a full numerical complexity analysis is presented.
A general framework for spatially-varying spectral filtering of signals defined on
the unit sphere is also developed, as an analogy to joint time-frequency filtering.
For spatio-spectral filtering, the spherical signals are first mapped from the spatial
domain into a joint spatio-spectral domain using SLSHT, where a spatio-spectral
signal transformation or modification is introduced. Next, a suitable scheme to
transform the modified signal from the spatio-spectral domain back to an admissi-
ble signal in the spatial domain using the least squares approach is proposed. It is
shown that the overall action of the SLSHT and spatio-spectral signal modification
can be described through a single transformation matrix, which is useful in prac-
tice. Finally, two specific and useful instances of spatially-varying spectral filtering
are presented, defined through multiplicative and convolutive modification of the
SLSHT distribution. The proposed framework enables filtering or modification in
the spatio-spectral domain which cannot be carried out in either the spatial or

spectral domain.
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Notations

x scalar variable
T vector variable

T unit vector

X matrix variable

X element in row x and column y of X

) inner product of two variables f and g

M, Lynom

Il Ly norm

N es Hilbert-Schmidt norm

| absolute value of parameter (-)

conjugate operation

transpose operation on vector

transpose operation on vector

Hermitian (conjugate transpose) operation

floor function

:é)’z
Q N
| E—

Kronecker delta

Dirac delta

[=%)
—~
e

L) Equiangular tessellation on the sphere
(L) Equiangular tessellation on SO(3)
¢,m) <> n mapping of two variables (¢, m) to single variable n using rule c.f. (2.17)

He spherical harmonic transform of degree ¢ and order m

% derivative with respect to x

* Anisotropic convolution operand

© Isotropic convolution operand

max|() maximum of the parameters

min() minimum of the parameters

diag(x) a diagonal matrix with diagonal elements given by vector x
[ ()] Integer ceiling function
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Chapter 1

Introduction

1.1 Motivation and Background

The main focus of this thesis is to develop novel signal processing techniques for
the analysis of data and signals defined on the unit sphere (or 2-sphere!), denoted
by S%2. The analysis and processing of signals defined on the sphere has been an
active area of research in the past two decades. Signals that are inherently defined
on the sphere appear in many applications found in various fields of science and
engineering. These applications include surface analysis in medical imaging [2, 3],
geodesy and planetary studies [1,4,5], computer graphics and computer vision [6-9],
planetary science [5], electromagnetic inverse problems [10], study and analysis of
cosmic microwave background (CMB) in cosmology [11-17], 3D beamforming [18]
and wireless channel modeling in communication systems [19].

The essence of signal processing embeds the notions of signals and linear sys-
tems; filtering, smoothing; prediction; detection and estimation in the presence of
noise; feature extraction. Signal processing techniques and theories have been thor-
oughly investigated and explored, primarily based on the assumption that signals
are defined on the real line, which is conventionally identified with time. Further,
conventional multidimensional signal processing, where signals are defined on a
multidimensional Fuclidean domain, is a natural generalization that has also been
extensively researched.

For the processing of signals on the sphere, the mapping of the data on the

sphere to a two dimensional plane, enables the use of signal processing methods

'In the sequel, “unit sphere”, “2-sphere” or simply “sphere” refer to the same thing.



2 Introduction

developed for Euclidean domain, but this procedure introduces errors. This is due
to the fact that the modeling of the signal defined on the sphere in the Euclidean
domain is not suitable. For example, the curvature needs to be taken into account
in planetary studies, especially for small heavenly bodies such as the Earth and the
Mars [20]. Therefore it is often required that signal processing techniques developed
for the Euclidean domain be extended and reformulated in non-trivial ways so that
they are suitable and well-defined for the spherical domain.

Extension of signal processing techniques developed for Euclidean signals is
a natural and sensible approach to analyze the signals inherently defined on the
sphere. In this context, many signal processing techniques have been tailored and
extended from the Euclidean domain to the spherical domain [4, 15, 16, 21-43].
These include convolution [33,44,45], filtering [25,30, 35|, feature extraction [5,24]
and spectrum estimation [1,20], finite-impulse-response (FIR) filtering [26], Slepian
concentration problem [46-49] on the sphere [1,27,50], to name a few. Among these
developments, the most fundamental notion is the analog of Fourier transform,
which corresponds to spherical harmonic transform [10,44,51,52] for signals on the
sphere. By definition of the spherical harmonic transform, any signal on the sphere
can be expanded in terms of spherical harmonic functions (or spherical harmonics
for short), and therefore, the spherical harmonic coefficients constitute the spectral
domain representation of any signal defined on the sphere. We also note the work
in the mathematical literature (e.g., [53,54]) providing algebraic view of the signal
processing methods, based on which a group theoretic formulation of continuous
spherical wavelets is proposed in [21,55].

This thesis is predominantly focussed on the formulation and the development
of signal processing techniques to analyze signals defined on the sphere. In the
remainder of this chapter, we first review the previous work on development of
signal processing techniques on the sphere. Then we discuss the research problems,
which are to be investigated in this thesis. Finally, we provide the summary of our

contributions and outline of thesis.

1.1.1 Convolution on the Sphere

One important signal processing tool is convolution between two signals defined on
the unit sphere, which is fundamental for filtering applications. While there are

various formulations of convolution on the sphere [28,30, 44, 56-58], these do not
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serve as an analog of the Euclidean-domain convolution as they lack some desired
or expected properties as we explain below.

One well-known and widely-used definition for convolution on the unit sphere
appears in [44], which has been generalized for the n-sphere and applied for esti-
mation of probability density functions in [59]. The advantage of this convolution
is that it results in a simple multiplication of the spectral (spherical harmonic)
coefficients of the signal and the filter in the Fourier domain. However, the con-
volution involves full rotation of the filter by all independent Euler angles which
includes an extra averaging over the first rotation about the z—axis. This is pre-
sumably done to ensure that the output domain of convolution is S?, but it results
in smoothing the filter by projecting it into the subspace of azimuthally symmetric
signals. Consequently, this convolution becomes identical to a simpler isotropic
convolution [57, 58] as shown in [45]. In contrast to conventional convolution in
the Euclidean domain, due to excessive smoothing, convolution in [44,57,58] is not
commutative and discards information.

Another definition of convolution for signals on the unit sphere can be found
in [30,56] and has been referred to as directional correlation in [28], since it preserves
the directional features of both the signal and filter. The convolution involves full
rotation of the filter by all independent Euler angles and a double integration
over the points on the unit sphere. While this results in a desired directional
or anisotropic convolution, the output remains a function of the three rotations
applied to the filter and consequently, the output domain is not S%.. Moreover,
the convolution is not commutative. From the discussion above, it becomes clear
that existing definitions of the convolution do not serve as direct analog of the

convolution definition in Euclidean domain.

1.1.2 Spatially Localized Spherical Harmonic Transform and
Spatio-spectral Analysis on the Sphere

For analysis of signals on the sphere, many signal processing techniques have
been developed and extended from the Euclidean domain to the spherical do-
main [4,15,16,21-25,27-30]. At their core, most of these techniques process the
signal directly either in the spatial spherical domain or in the spectral domain,
formed by spherical harmonic coefficients. Since the spherical harmonic functions

are not spatially concentrated functions on the sphere, spherical harmonic coef-
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ficients provide information about global contribution of spherical harmonics in
the signal and do not convey any insight about the localized contribution of the
spherical harmonics. Therefore, in addition to the information given by spherical
harmonic transform, the signal analysis techniques are essentially required to reveal

the localization of features in the signal.

In order to obtain and analyze the localized spectral contents of signals defined
on the sphere, wavelets have been extensively investigated and explored due to
their ability to resolve localized signal content in both space and scale. Wavelet
techniques for signals on the sphere were originally established in a group theo-
retic framework [21,55,60-62]. Inspired from this original work and following the
formulation of wavelets on Euclidean domain, more practical and different notions
of wavelets have been developed in recent works [15, 16, 22-24, 28-30, 60], These
developed wavelet techniques have been utilized in various applications (e.g., in
astrophysics [13,14,63-66] and geophysics [5,67,68]). Some of the wavelet tech-
niques on the sphere also incorporate directional phenomena in the spatial-scale

decomposition of a signal (e.g., [5,28-30]).

An alternative to the wavelet (i.e., spatial-scale) approach is a “spatio-spectral”
(spatial-spectral) approach, where the goal is to obtain a joint spatio-spectral rep-
resentation of signals defined on the sphere. Analogous to windowed Fourier trans-
form in the Euclidean domain, the localized spectral analysis, composed of spatial
windowing followed by spherical harmonic transform, was first devised in [4], and
was used to interpret global estimates of the gravity and topography of Venus in
the context of geodynamical models. It is also shown that the localized transform is
invertible by spatial averaging of the transform. The effectiveness of the transform
to reveal the localized spectral contents of a signal, however, depends on the chosen
window function. The authors in [4] use azimuthally symmetric spectrally trun-
cated window function which is concentrated in the spectral domain, but exhibits
sidelobes in the spatial domain. Since the simultaneous localization of a window
in spatial and spectral domains determines the quality of the global estimates of
topography and gravity, the eigenfunctions obtained from Slepian concentration
problem on the sphere [27] are used as window functions in [1,20,69], where again
azimuthally symmetric window functions have been used for windowing in the spa-

tial domain. In these investigations, the localized spectral analysis has been carried
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out with an objective to estimate the spectrum? of the signal. However, it can also
be used to obtain the spatio-spectral representation of the signal that reveals the
contribution of spectral contents in any spatially localized region. The domain of
such representation is jointly spatial and spectral, or spatio-spectral for short.
The localized spectral analysis method, composed of windowing in the spa-
tial domain followed by the spherical harmonic transform, is analogous in nature
and spirit to the short-time Fourier transform (STFT) in time-frequency analysis.
In time-frequency analysis, STF'T has been under exploration for the last half of
the century (e.g. [70-79]). The absence of cross terms in the STFT representa-
tion of a signal, which appear in quadratic distributions like Wigner, makes the
STFT a more attractive choice to study signals in time-frequency domain than
using quadratic type distributions [76,80]. In addition, the magnitude-wise shift
invariance property of the STFT in both time and frequency domains simplifies the
interpretation of the time-frequency representation of the signal [80]. Since STFT
reveals the time dependence and evolution of the signal spectrum, it has been used
in many applications. These include obtaining of localized frequency contents and
spectral estimation of non-stationary signals [72], analysis of speech signals [81],

radar applications [82] and time-varying filtering [83-85].

1.1.3 Filtering in the Spatio-spectral Domain

Representation of a signal in the spatio-spectral domain depicts how its spectral
contents are changing with space, that is, it provides information about spatially
varying spectral components in a signal. Moreover, the spatio-spectral representa-
tion gives an indication as to which spectral components of the signal are present
at a given spatial position and their relative amplitude, thus it reveals the local-
ized spectral contents. Consider an analogy in time-frequency domain: the time
frequency representation of a signal is conceptually a musical score with frequency
running along one axis and time along the other, and the time-frequency represen-
tation indicates the frequency content, the timing information, and the duration
of various dominant signal components [86]. Such representations are useful for
the analysis, modification, synthesis, and detection of a variety of non-stationary

signals with time-varying spectral content [87].

2Tt must be noted here that the word spectrum refers to normalized energy of the signal
per spherical harmonic degree [1,4,20], and must not be confused with the spectral domain
representation of the signal.
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Most of the existing signal processing techniques developed on the sphere either
process the signal directly either in the spatial (spherical) domain or in the spectral
domain. However, there are situations where analysis and modification of spherical
signals jointly or simultaneously in spatial and spectral domains is required. This is
particularly important when we wish to reveal and modify spatially-varying spectral
contents of signals. For this purpose, the spherical harmonic transform is not
adequate because it cannot directly enlighten the “localized” spatial contributions
of a signal in the spectral domain. For example, consider the convolutive smoothing
in the spatial domain [44,88], which is equivalent to the multiplication of the signal
and filter spherical harmonic coefficients in spectral domain. Therefore, the same
filter is used for smoothing the signal at all spatial positions and it is not possible
to apply a spatially-varying operation in the spectral domain and vice versa. This
motivates the need to look for suitable joint spatio-spectral signal transformations

on the unit sphere.

The closest class of related work is the extension of Euclidean wavelets to spher-
ical wavelets, which enables filtering at different scales [5,15,21,22,24,29,89]. The
theoretical conditions on the invertibility of spherical wavelet transform are pre-
sented in [30] and the proposed framework is illustrated using wavelets that provide
space-scale decomposition. However, to the best of our knowledge, there exists no
framework that directly deals with signal transformations and modifications in joint

spatio-spectral domain rather than in joint spatial and scale (wavelet) domains.

Interestingly the Euclidean counterpart, namely joint time-frequency signal
analysis and filtering, has been well established for several decades [84,85,90-92].
In particular, the short-time Fourier transform (STFT) and its variations [75,77,
78,84,85,91,92] have triggered research to generalize the concepts of filtering theory
to joint time-frequency domain. Saleh and Subotic presented an interesting and
novel approach of time-frequency filtering in [85], where they devised the modifica-
tion of the STFT representation of signal as masking with the filter function in the
time-frequency domain. A similar concept is also adopted in [83] for discrete-time

signals and is generalized in [84] for different operations in time-frequency domain.
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1.1.4 Directional Localized Spherical Harmonic Transform

and Fast Algorithms for Spatio-spectral Analysis

The use of an azimuthally symmetric window function in obtaining the spatio-
spectral representation of a signal provides mathematical simplifications, however,
such an approach cannot discriminate localized directional features in the spatio-
spectral domain. This motivates the use of asymmetric window functions in the
spatio-spectral transformation of a signal using the spatially localized spherical
harmonic transform. Analogous to the STFT representation in time-frequency
analysis, the definition of the localized spherical harmonic transform in [4] can be
employed to define the spatio-spectral representation of a signal using azimuthally
asymmetric window functions for spatial localization. The use of an asymmetric
window function enables the transform to reveal directional features in the spatio-
spectral domain.

Furthermore we note that the development of fast algorithms for the com-
putation of spatio-spectral representation of signal is of considerable importance.
This is due to the fact that the data-sets on the sphere can be of considerable
size (e.g., three million samples on the sphere for current data-sets [93] and fifty
million samples for forthcoming data-sets [94]), for which the computation of the

spatio-spectral representation of a signal becomes computationally challenging.

1.2 Overview and Contribution of Thesis

The focus of this thesis is to revisit existing signal processing theories on the sphere
and develop new techniques which enable the analysis of signals in spatio-spectral
domain. Moreover, the problem of developing fast algorithms for the proposed

techniques is also addressed.

1.2.1 Questions to be Answered

Following the literature review presented in Section 1.1, we pose the following

questions that are answered in this thesis:

Q1. How should the convolution be defined on the sphere such that it serves as
counterpart of Euclidean convolution and satisfies the properties like commu-

tativity and being anisotropic in nature? If such a convolution can be defined,
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Q2.

Q3.

Q4.

Q5.

Q6.

Q7.

Qs.

Q9.

how can we evaluate the convolution output in computationally efficient man-

ner?

How can we develop a tool, analogous to STFT in time-frequency analysis,
for signals on the sphere to obtain such a representation of a signal in joint
spatio-spectral domain, which can reveal the localized contribution of spectral

contents in a signal?

How should we suitable window function for spatial localization in obtaining

localized spherical harmonic transform?

For signals on the sphere, how can we formulate the concentration uncertainty

principle that relates the signal concentration in spatial and spectral domains?

Given the spatio-spectral representation of a signal on the sphere, how can we

perform filtering operations on the signal in spatio-spectral domain?

Once the spatio-spectral representation of a signal is modified as a result of
processing or filtering in the spatio-spectral domain, how can we obtain a
physically valid signal on the sphere that “best” corresponds to the modified

spatio-spectral representation?

What are the potential candidates for spatio-spectral filtering operations and
how can these joint-domain operations be formulated as linear transformations

of the signal in spatial or spectral domain?

How can we obtain the information about the directional features of the signal

in the spatio-spectral domain?

How can we efficiently compute the spatio-spectral representation of a signal?

1.2.2 Thesis Contributions and Organization

Fig. 1.1 depicts the flowchart of the thesis. The mathematical background is pre-

sented in Chapter 2. The first original contribution in this thesis (Chapter 3) is

based on finding the counterpart of Euclidean convolution on the unit sphere. The

second part of the thesis (Chapters 4-6) develops signal analysis in the spatio-

spectral domain. The second part can be further categorized into development of
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Figure 1.1: Thesis Flow Chart.

techniques to obtain spatio-spectral representation (Chapter 4), signal transforma-
tions in the spatio-spectral domain (Chapter 5), and incorporating directional phe-
nomena in the spatio-spectral domain and development of fast algorithms (Chapter
6).

The summary of the contributions in each chapter is as follows:

Chapter 3 - Commutative Anisotropic Convolution

In Chapter 3, we consider the problem of defining convolution on the sphere that
is analogous to the familiar Euclidean-domain R? convolution in many ways. We
first revisit the existing definitions of convolution on the sphere and then propose
a new definition of convolution. Following the discussion in Section 1.1.1, we note
that the existing definitions in the literature are not analogous in nature to the

Euclidean domain convolution. The new contributions in this chapter are

1. We prove that, in order to obtain desired properties, not all independent
Euler rotations should be involved in the definition of convolution. Instead,
we introduce a controlled dependency between the two rotations of the filter
about the z—axis. Therefore, there are only two degrees of freedom in the
convolution. We highlight that the same philosophy has been rightfully ap-

plied to convolution in the 2-dimensional Euclidean space, R?, where not all
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three proper “isometries” of the space (2 translations and one rotation) are

involved in convolution.

2. We propose a new definition of convolution on the sphere with the following

desired properties:

e In contrast to the averaging over all possible rotations, it is formulated
considering the rotations characterized by two parameters, which agrees

with the fact that S? is two dimensional;
e It generates an output whose domain remains in S%;

e [t is anisotropic in nature, i.e., the directional features of both filter and

signal contribute towards the output of convolution;

e [t is commutative, that is, changing the roles of filter and signal does

not change the outcome of convolution.

3. We formulate and analyze the proposed convolution in the spectral (spherical

harmonic) domain.

4. We also present a fast algorithm for the efficient computation of the proposed
convolution. In the development of a fast algorithm, we employ the factoring

of rotation approach followed by separation of variables technique.

The results in Chapter 3 have been presented in the following publications which

are listed again for ease of reference:

J2. P. Sadeghi, R. A. Kennedy, and Z. Khalid, “Commutative Anisotropic Con-
volution on the 2-Sphere,” IEEFE Trans. Signal Process., vol. 60, no. 12, pp.
6697-6703, Dec. 2012.

C2. Z. Khalid, R. A. Kennedy, and P. Sadeghi, “Efficient Computation of Com-
mutative Anisotropic Convolution on the 2-Sphere,” in 5th International Con-
ference on Signal Processing and Communication Systems, ICSPCS’2011, Gold
Coast, Australia, Dec. 2012.

Chapter 4 - Spatially Localized Spherical Harmonic Transform for
Spatio-spectral Analysis
In Chapter 4, we consider the development of a tool for signals on the sphere,

analogous to STF'T in time-frequency analysis, to obtain the signal representation
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in spatio-spectral domain. We use the definition of a spatially localized transform
in [1,4] to obtain the spatio-spectral representation of a signal. Later, we analyze
different window functions from the perspective of an uncertainty principle. The
concentration uncertainty principles that relate the simultaneous concentration of
a signal in the spatial and spectral domain are also derived in Chapter 3. The main

contributions in Chapter 3 are summarized below:

1. We develop a tool called the spatially localized spherical harmonic transform
(SLSHT) to represent a signal on the unit sphere in a joint spatio-spectral do-
main. We give a matrix representation of this transform operation, resulting
in the spatio-spectral representation which we call the SLSHT distribution.
The SLSHT is defined as spherical harmonic transform of the spatially local-
ized signal, where spatial localization is achieved using a window function.
Applying the SLSHT distribution to the example of the Mars topographic
map shows the ability of the transform to reveal spatially-localized spectral

contributions.

2. We introduce a transform operation inspired by the characteristic function
in time-frequency analysis [76]. This transform operation results in a new
spatio-spectral distribution, which we call complementary distribution. We
investigate the properties of complementary distribution and derive the re-
sults that relate the signal, the window function and the complementary

distribution.

3. We discuss the inherent trade-off between the spatial and spectral resolution

of the window function from the perspective of the uncertainty principle.

4. Finally, we present a concentration uncertainty principles for signals on the
sphere which relate the localization of the concentration of a signal in spatial

and spectral domains.

The results in Chapter 4 have been presented in the following publications which

are listed again for ease of reference:

J1. Z. Khalid, S. Durrani, P. Sadeghi, and R. A. Kennedy, “Spatio-spectral Anal-
ysis on the Sphere using Spatially Localized Spherical Harmonics Transform,”
IEEFE Trans. Signal Process., vol. 60, no. 3, pp. 1487-1492, Mar. 2012.
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C1l. Z. Khalid, S. Durrani, R. A. Kennedy, and P. Sadeghi, “Concentration Un-
certainty Principles for Signals on the Unit Sphere,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., ICASSP’2012, Kyoto, Japan, Mar. 2012.

Chapter 5 - Spatially Localized Spherical Harmonic Transform for
Spatio-spectral Analysis

In Chapter 5, we present a framework for filtering and modification of signals
in the joint spatio-spectral domain. The SLSHT distribution of a signal presented
in Chapter 4 is processed in the joint spatio-spectral domain to yield the modified
distribution and transformed back to the spatial domain using a suitably devised
inverse operation. Due to the modification of the SLSHT distribution, there is a
possibility that there exists no physical signal which corresponds to the modified
distribution—an analogous problem is well known in time-frequency analysis [84,
85,90-92]. Therefore, there is a need to find the signal that best approximates the

modified distribution. The main contributions in this chapter are:

1. We present a general formulation of an integral operator that transforms the
SLSHT distribution of a signal to a modified spatio-spectral distribution. We
also formulate this spatio-spectral modification as a linear transformation of

the signal in the spectral domain.

2. For the case when the modified spatio-spectral distribution is not a valid
SLSHT distribution, we devise a suitable inverse spatio-spectral transform,
which finds a signal whose distribution best approximates the modified dis-

tribution in the least squares sense.

3. Using the proposed paradigm of signal transformation, we investigate two
types of filtering operations in spatio-spectral domain. First we consider fil-
tering as multiplication of the filter function defined in spatio-spectral domain
and the given SLSHT distribution. Next, we perform filtering as convolution
of the filter function and the SLSHT distribution of a signal. In contrast to
the conventional spatially-invariant spectral filtering, these types of filtering
operations can be thought as spatially-varying spectral filtering of signals in

the spatio-spectral domain.

The results in Chapter 5 have been presented in the following publication which

is listed again for ease of reference:
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J3. Z. Khalid, P. Sadeghi, R. A. Kennedy, and S. Durrani, “Spatially Varying
Spectral Filtering of Signals on the Unit Sphere,” IEEFE Trans. Signal Process.,
vol. 61, no. 3, pp. 530-544, Feb. 2013.

Chapter 6 - Spatially Localized Spherical Harmonic Transform for
Spatio-spectral Analysis

In Chapter 4, the SLSHT distribution for spatio-spectral representation of a
signal is defined as localized spherical harmonic transform, where we use an az-
imuthally symmetric window function. The transformation of the signal in the
spatio-spectral domain using the SLSHT distribution is explored and investigated
in Chapter 5. The use of an azimuthally symmetric window function provides
mathematical simplifications in obtaining the spatio-spectral representation of the
signal, however, the use of a symmetric function may not be able to discrimi-
nate localized directional features in the spatio-spectral domain. This motivates us
to use asymmetric window functions for spatial localization in the spatio-spectral
transformation of a signal. In order to serve this objective, we define the SLSHT
and the SLSHT distributions using azimuthally asymmetric window functions for
spatial localization. Since the use of an asymmetric window function enables the
transform to reveal directional features in the spatio-spectral domain, we call the
proposed transform the directional SLSHT and the spatio-spectral representation
as directional SLSHT distribution. We also provide a harmonic analysis of the
proposed transform and present an inversion relation to recover the signal from
its directional SLSHT distribution. Furthermore, we develop fast algorithms for
the evaluation of directional SLSHT distribution. The main contributions in this

chapter are:

1. We present the directional SLSHT to transform a signal on the sphere onto
its joint spatio-spectral domain as a directional SLSHT distribution. The
directional SLSHT is composed of SO(3) spatial localization followed by the

spherical harmonic transform.

2. We propose the use of an azimuthally asymmetric window function to obtain
spatial localization, which enables the transform to resolve directional fea-
tures in the spatio-spectral domain. We also present an inversion relation to
synthesize the original signal from its directional SLSHT distribution using

our formulation.
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3. Since data-sets on the sphere arising in applications are of considerable size,
we develop a fast algorithm for the efficient computation of the directional
SLSHT distribution of a signal. The computational complexity of comput-
ing the directional SLSHT is reduced by providing an alternative harmonic
formulation of the transform and then exploiting the factoring of rotation
approach [95] and the fast Fourier transform. We also study the numerical

accuracy and the speed of our fast algorithm.

4. Since the directional SLSHT distribution relies on a window function for spa-
tial localization, we analyze the band-limited window function obtained from
the Slepian concentration problem on the sphere, with nominal concentration
in an elliptical region around the north pole. We also provide an illustration
that highlights the capability of the directional SLSHT to reveal directional
features in the spatio-spectral domain. This capacility is likely to be of use

in many applications.

The results in Chapter 6 have been presented in the following publication which

is listed again for ease of reference:

J4. Z. Khalid, R. A. Kennedy, S. Durrani, P. Sadeghi, Y. Wiaux, and J. D. McEwen,
“Fast Directional Spatially Localized Spherical Harmonic Transform,” IEFEFE
Trans. Signal Process., 2013. (Accepted)

Finally, Chapter 7 gives a summary of the thesis results and provides suggestions

for future research work.



Chapter 2

Signals on the Sphere and
Mathematical Background

In this chapter, we introduce important concepts related to signals defined on
the unit sphere, in order to provide mathematical background and to clarify the

adopted notation used in later chapters.

2.1 Hilbert Space L*(S?)

2.1.1 Unit Sphere Domain

Let S? denote the 2-sphere or unit sphere domain, which is defined as
S* & {x cR®: ||z|| =1} (2.1)

where x denotes the vector in 3-dimensional Euclidean or Cartesian domain R?
and ||z|| denotes the Euclidean norm. The points on the S? belong to R?® but the
unit sphere is different from R? in a way that it is bounded and has a constant
non-zero curvature.

By definition, a vector representing a point on the sphere is a unit vector,
and is parameterized in terms of spherical coordinates. We define two such unit-

A A~ . . . A~ ~ A
norm vectors, & and g, represented in the spherical coordinates as & = &(0, ¢) =

(sin 6 cos ¢, sin fsin ¢, cos#)’ € S?and § = §(V, ¢) = (sin 1 cos ¢, sin ¥ sin ¢, cos )’
€ S?, respectively, where ()" denotes matrix or vector transpose. 0,19 € [0, 7] repre-

sent the co-latitude or elevation measured with respect to the positive z—axis and

15
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¢, € [0,2m) represent the longitude or azimuth and are measured with respect
to the positive xr—axis in the x—y plane. The dot product between two vectors &
and g, representing two points on the sphere, is related to the the central angle A,

between the vectors & and ¥,

&g =cos A ((0,9), (9, ¢)) =sinfsind cos(¢ — ¢) + cos b cos . (2.2)

2.1.2 Signals on the Sphere - Hilbert Space L*(S?)

We consider complex-valued functions, such as f(0,¢) = f(&) and h(60, ¢) = h(&),

defined on the unit sphere. Define the inner product

(1) 2 [ @) i@ ase) (23)
where ds(&) = sinf df d¢ is the area element, (-) denotes complex conjugate and
the integration is carried out over the whole unit sphere. The inner product in
(2.3) induces a norm || f|| £ (f, f)'/2. Finite energy functions defined on the unit
sphere, such that ||f||] < oo, are referred as “signals on the unit sphere”. Signals
on the sphere form a Hilbert space L?(S?) under the inner product defined in (2.3).

Throughout this thesis, functions with finite induced norm belonging to L?(S?) are

referred as signals on the sphere or signals for short.

2.1.3 Spherical Harmonics

The Hilbert space L?(S?) is separable and the spherical harmonic functions (or
spherical harmonics for short) form the archetype complete orthonormal set of
basis functions. The spherical harmonic, Y;"(&) = Y, (0, ¢), for degree ¢ > 0 and
order |m| < ¢ is defined as [51]

Y™ (0, 0) = Ni" P (cos 0) €™, (2.4)

where N;" is the normalization factor given by

R 25
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which ensures that ||Y;"| = 1. P/*(x) in (2.4) is the associated Legendre function
defined for degree ¢ and order 0 < m < ¢ as [51,96]

Pm(a:) o (_1)m<1 _ $2)m/2ﬂ(1}2 . 1)4 (2 6)
e o datm '

_—ipgm(x), (2.7)

for |z| < 1. The zero order associated Legendre polynomials are referred as Legen-

dre polynomials (P(z)), that is, PY(z) = Py(z).

2.1.4 Properties of Spherical Harmonics
Orthonormality

With the definition of spherical harmonic functions in (2.4), they satisfy the or-

thonormality condition
<Ye ] p - 5€p5m a (2-8)

where 6,, , is the Kronecker delta function: 6,,, = 1 for m = g and is zero otherwise.

Spherical Harmonics Addition Theorem

We also note one of the important property of spherical harmonics, known as

spherical harmonics addition theorem [96]

20+ 1
Z Y (&) Y (9) = 4+ PO(cos A,) (2.9)
m=—/{
where cos Ay = & - ¢ is defined in (2.2). Furthermore, the completeness relation on

the sphere is given by [96]

) 4

DD V@) Y(G) = (sin€) 60— 9) 6(6 — ). (2.10)

=0 m=—¢
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Complex Conjugate Property

We also note the following relation between Y;" (&) and Y, ™ (&)

V(@) = (—1)"Y, (@), (2.11)

2.1.5 Spherical Harmonic (Fourier) Transform

By completeness of spherical harmonics [10], any signal f € L?(S?) can be expanded

f(@) = Z Z R (2.12)
{=0 m=—/¢
where
D2 () = [ r@VT@ as(@), (213)

is the spherical harmonic Fourier coefficient (or spherical harmonic coefficient for
short) of degree ¢ and order m. The equality in (2.12) is understood in terms of

convergence in the mean (strong convergence in the norm)

L l
lim [ f(@) =) > (O @) =0. (2.14)

{=0 m=—/¢

The signal f € L?(S?) is said to be band-limited with maximum spherical
harmonic degree or spectral degree or band-limit Ly if (f);* =0 for £ > Ly.

The signal f € L*(S?) is said to be azimuthally symmetric if all of the non-zero
order spherical harmonic coefficients are zero, that is, if (f)}* = 0 for m # 0.

Using (2.12) and employing the orthonormality of spherical harmonics, we can

obtain the following Parseval relation

1A = (f, f) = Z Z (f (2.15)

£=0 m=—¢

2.1.5.1 Shorthand Notations and Vector Notation

In the following we may use the following shorthand notations

Sy ey Yy ey 210
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for brevity. For notational simplifications, we may also express the spherical har-
monic Y, as Y,, and the spherical harmonic coefficient (f);* as (f),. That is, as
a function of a single integer index n instead of two integer indices ¢ and m, using

the one-to-one mapping

(m)<n, n=0F+0+m, (=|vn], m=n—|[vn|](|vVn]—-1), (2.17)

where | - | denotes the integer floor function. We will also deal with the spherical

harmonic coefficients in vector form. Using the mapping defined in (2.17), we define

F=(Fo Dy o) = (O O AL (HL ) (218)

as the spectral response of the signal f. For a band-limited signal f with band-limit
Ly, £ = (o (N1s (s -+, (f)Nf)/7 where Ny = L} 4 2L;. For an azimuthally
symmetric signal f, define f* = ((f)5, (/)% ()3, )"
2.1.5.2 Spherical Harmonic (Fourier) Transform Operator
Define the operator F, which transforms the signal f(&) into its spectral response
f as

f=(Ff) @) (2.19)

Also the inverse spherical harmonic transform F~! is well-defined such that F~! f =

f(@).

2.1.6 Spherical Dirac Delta Function

The Dirac delta function §(&, g) on the sphere with the sifting property

1@ = [ 0(@.9)f(9) ds(o). (220

has following expansion in spherical harmonic domain (see completeness relation

in (2.10))
S(&,9) =D Y(&)Y"(9). (2.21)

Note that §(2,g) ¢ L*(S?).
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2.1.7 Useful Subspaces of L%(S?)

The set of band-limited signals, such as f(2) € L*(S?), with the maximum spectral
degree L; such that (f)* = 0 for £ > L; forms a (L; + 1) dimensional closeed
subspace of L*(S?) and is denoted by Hy,.

The set of azimuthally symmetric functions which are independent of the az-
imuth angle (such that f(&) = f(0,¢) = f()) forms a subspace of L*(S?) and is
denoted by H°. In this case, only the zero-order spherical harmonic coefficients of
f are non-zero. That is (f)7* = 0 for all m # 0. Mathematically, any signal f € H°

can be expressed as

o0

£(0,0) = £(0) => (Y]

=0

- ,/%4—;1( F0P,(cos 6). (2.22)

Completeness of HY follows from the completeness of Legendre polynomials [96].

2.1.8 Spherical Harmonics Triple Product

The spherical harmonics triple product is given by

Tirin) = T(s tipaitom) =2 [ V@V@T@ds@) 2

with mappings (s,t) <> u, (p,q) <> r and (¢, m) <> n. The triple product can be

expressed in terms of Wigner-35 symbols [51] as

T(uyr;n) =T(s,t;p,q;¢,m) = (—=1)™ \/(28 * 1)(2p4: DR+

(s b g) (S pot ) (2.24)
000 t ¢ —m

We note that T'(u;r;n) = T(r;u;n). We further note that the Wigner-3j

symbols [51] are real-valued. Therefore, T'(u;r;n) = T'(u;r;n), which can also be
directly proven using (2.23), symmetry relations of Wigner-3; symbols and the fact

that T'(u;r;n) is non-zero only when s+ p + ¢ is even.
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2.2 Rotations on the Sphere

Rotations on the sphere serve as counterparts of translations of the Euclidean
domain. We define the effect of rotations on the signal defined on the sphere as
an operator. We first define the rotation operator and later we note the effect of

rotation in spectral domain.

2.2.1 Rotation Operator

Rotations on the sphere are often parameterized using Euler angles (¢, 9,w) €
SO(3), where ¢ € [0, 27m), ¥ € [0, 7] and w € [0, 27) [51]. Using the ‘zyz’ Euler
convention, we define the rotation operator D, = D(yp, ¥, w), which rotates a func-
tion on a sphere in the sequence of w rotation around the z-axis, then ¢ rotation
about the y-axis followed by a ¢ rotation around the z-axis. If a function f(0, @)

is rotated on the sphere, then

(Dpf) (@) = (D(p,9,w)f) (@) = f(R™'&), (2.25)

where R is the 3 X 3 rotation matrix corresponding to the rotation operator
D(p,¥,w) and is given by [96]

cos p cost cosw — sinpsinw  — cospcos¥sinw — sinpcosw  cos wsin

R = | sinpcostcosw — cospsinw  —sin g cos ) sinw + cos pcosw  sin @ sin
sin ¥ cos w sin ¥ sin w cos ¥
(2.26)

The inverse of D(p, ¥, w) denoted by D(p, 9, w)™ ! is D(—w, =19, —p).

2.2.2 Effect of Rotation in Spectral Domain

If a signal f(6,¢) is rotated on the sphere under rotation operator D(p, 9, w), the
spherical harmonic coefficient, of degree ¢ and order m, of the rotated signal is a
linear combination of different order spherical harmonic coefficients of the original

signal of the same degree ¢ as [51]

(D(p,0,w)f)) 2 (D0, £, Y7") = 3 D™ (0,9, 0) (7, (2.27)

m/'=—{
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where D;n’m/(go, J,w) = Dzn’ml (p) is the Wigner-D function defined in next subsec-

tion.

2.2.3 Wigner-D Function

The Wigner-D function is defined as
D™ (p) = D™ (9, 9,0) = e~ 2™ ()=, p= (i0,0,w) € SO(3) (2.28)

where |m|, |m’| < ¢ and dJ"™ () is the Wigner-d function [51] given by

VA m)(—m)(C+m)!(l —m)!
L+ m' —n)!n)(l —n—m)(n—m'+m)!

O\ 20—2n+m’—m 0 2n—m/+m
Cos <§) sin <§> , (2.29)

4 (0) = SO (=1

n

We note the following relation between spherical harmonic function and Wigner-

m 47—
D, 70(99719,0) =1/ %—Hygmw,@)- (2.30)

2.2.4 Rotation of Azimuthally Symmetric Function

D function

For the azimuthally symmetric functions h(2) € H°, the w rotation around z—axis
becomes ineffective and can be set to w = 0. Hence, the expression in (2.27)

simplifies to

47

TRl (2.31)

(D(,9,0)h);" = Dy (,0,0)(h)} =

where the second equality follows from the relation between spherical harmonic

and Wigner-D function given in (2.30).

2.3 Signals on the Rotation Group SO(3)

For ¢ > 0 and m, m’ € Z such that |m|, |m'| < ¢, the Wigner-D functions in (2.28)

form a complete set of orthogonal functions for the space L*(SO(3)) of functions
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defined on the rotation group SO(3) and follow the orthogonality relation

ot 872
D™ (0) DR (p) dp

= SO 2.32
50(3) 20 + 1 LpPmqPm’q ( )

where dp = dysinvdidw and the integral is a triple integral over all rotations
(o, 9, w) € SO(3) [51]. Thus, any function f € L?(SO(3)) may be expressed as
oo 14 A .
Fo) =222 > (N D™ (v, (2.33)

£=0 m=—L m=—4'

where

m,m’ 2€+1 Amaml N
e LD (2.34)

m,m’

The signal f is said to be band-limited with maximum degree L; if ( f) '

0, Vl > Lf.

2.4 Summary

In this chapter, we have introduced the required mathematical background. The
notation adopted in this chapter is used throughout this thesis. However, the new

notation or formulation, if required, will be defined in later chapters.






Chapter 3

Commutative Anisotropic

Convolution

In this chapter, we propose a new definition of convolution on the 2-sphere that
is analogous to the familiar Fuclidean-domain convolution in many ways. The
proposed convolution is the first type of convolution on the 2-sphere which is com-
mutative. Two other advantages, in comparison with existing definitions in the lit-
erature, are that 1) the new convolution admits anisotropic filters and signals and
2) the domain of the output remains on the sphere. Therefore, the new convolution
well emulates the conventional Euclidean convolution. In addition to providing the
new definition of convolution and discussing its properties, we provide the spectral
analysis of the convolution output. We also develop a fast algorithm for efficient
computation of proposed convolution. This convolutional framework can be useful

in filtering applications for signals defined on the 2-sphere.

This chapter is organized as follows. We review the existing definitions in the
literature, which leads to our problem formulation in Section 3.1. In Section 3.2, we
establish a commutative anisotropic convolution and provide some graphical depic-
tion of the proposed approach. In Section 3.3, we present the spectral analysis of
the proposed convolution. Finally, in order to efficiently compute the commutative

anisotropic convolution, we develop a fast algorithm in Section 3.4.

25
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3.1 Existing Formulations of Convolution

The conventional convolution between two functions on 2-dimensional Euclidean
space, R? is
(fxh)(@) = [ fl@—y)h(y)dy, (3.1)
R

where x, y € R2. It is easy to verify that the convolution is commutative, f x h =
hxf.

On the premise that rotations on the sphere are counterparts of translations in
the Euclidean domain, the following definitions of convolution on S? in the literature
involve all three independent rotations in the rotation group SO(3). The aim of the
next two subsections is to formally, albeit briefly, introduce these definitions and
point out the differences in their characterizations. We then pose a set of questions

in search for a counterpart of Euclidean convolution on the 2-sphere.

3.1.1 Type 1 (Anisotropic) Convolution

The following definition has appeared in [30, 56]

oo 0.0) = hx f 2 [ (D0, 0)h) (@) f(@) ds(). (32)

S
By this definition, the domain of convolution output does not belong to S?. Instead,
as it is clear from above, g is a function of three independent Euler rotation angles
p,¥,w. Since a proper rotation on the 2-sphere is an isometry, we can apply the
inverse of rotation operator to both parts of the integrand in (3.2) and leave the

integral unchanged, as follows:

hxf= SQ(D(ga,ﬁ,w)_lD(go,ﬁ,w)h) (&) (D(gp,ﬁ,w)_lf)(:f:) ds(&)

= [ 1@) (PG, 0.0)7 1) (@) ds@) = [ 1(@) (D=0, =) £)(@) ds(@)
(3.3)

However, since D(p, ¥, w) # D(—w, —¥, —p) in general, this convolution is not

commutative.
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3.1.2 Type 2 (Isotropic) Convolution

The following definition is adapted from [44]

Aéi i 13 1) dw sin
(h@f)(a:)_%/ofo/o h(R™'#) f(R7) dw sind di d, (3.4)

where ) = (1,0,0)" € §? is the north pole. Noting that in f(R%), the first rotation
by w of the north pole around the z—axis is ineffectual, we can rewrite the above

convolution as
(ho f) (&) = %/0 W/OW/O W(D(go,ﬁ,w)h)(:%)f(ﬁ, ©) dw sind di de. (3.5)

Compared to (3.2), (3.5) has a somewhat similar spirit with the difference that
an extra averaging over the first rotation w is performed which turns the filter h into
an azimuthally symmetric kernel hy = P°h, where P° is the projection operator
which projects a signal belonging to L?(S?) into the subspace H® C L?(S?). This
will bring the output of the convolution back to S?. However, as shown in [45] this

definition is identical to the isotropic convolution [57, 58]
(o @) 2 [ 1ol 5) £(3) ds9). @< (3.
§

and the extra averaging over w “kills” any directional azimuthal component of the

filter.

This convolution, when evaluated in the spherical harmonic domain is given by

47
20+ 1

(he f,Y") = (ho® f,Y") = (h)2 (F)7 (3.7)

which has a desirable multiplicative property between spherical harmonic coeffi-
cients of the filter and signal. However, as expected, only the zero-order spherical
harmonic coefficients of the filter are present, which makes this definition not com-

mutative in general, and information is discarded.

3.1.3 Problem Statement

From the discussion above, it becomes clear that existing definitions are either

anisotropic, but with an output whose domain is not in S?, or their output domain
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is S?, but can only accommodate isotropic filters. Neither of the convolutions are
commutative.

Motivated by the differences in the characterization of convolution on the sphere,
we define a convolution on S?, which simultaneously satisfies the following require-
ments: 1) the domain of its output is S?, 2) involves an integral over points on S?,

3) is anisotropic, and 4) is commutative.

3.2 Commutative Anisotropic Convolution on the

2-Sphere

The Euclidean convolution in (3.1) forms an implicit prescription for constructing a
suitable notion of convolution on S?. In particular, we are guided by the fact that in
R2, not all three isometries are involved in the convolution. Only two translations
and not the rotation are used. Hence, it is natural to think that only two degrees
of freedom in the rotations on S? should be used to define the convolution, because
S? is a 2-dimensional, albeit curved, surface. Therefore, we propose the following

formulation as the initial candidate for our convolution

0.00.) 2 [ (Dl 0.)0)(@)1(8) ds(@). (3.9

This candidate appears to be somewhat similar to the anisotropic convolution
in (3.2), but it differs in philosophy and actual content. For example, in (3.2), the
left hand side is a function of ¢, 9, w or the convolution results in a function whose
domain is not S?. Here, on the other hand, the output should be understood as
a function of ¥ and ¢ only. The initial rotation angle w in (3.8) is unspecified at
this point. It might be a constant or a function of ¥ and ¢. Our initial candidate
satisfies the first three requirements in Section 3.1.3. However, it is still lacking the

commutative property, which will be dealt with below.

3.2.1 Commutative Anisotropic Convolution
Our aim here is to constrain the rotation operator in (3.8) such that the definition of
convolution becomes commutative. We present the result in the following theorem.

Theorem 3.1 A necessary and sufficient condition for the anisotropic convolution

in (3.8) to be commutative is w =m — .
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Proof
We first prove the necessary condition and show that for the convolution to be
commutative, w has to be m — ¢. Following similar reasoning as in (3.3), we can

write (3.8) as

= [ @) (P, -0, ~)1) (@) ds(@), 39
Our objective is to select w such that
D(% 19, w) = D(_w7 _197 _90>a (310)

so that the convolution becomes commutative. The negative rotation —J around
the y—axis appears to be out of range of permissible co-latitude rotations ([0, 7]),

which is resolved through the following identity [96]
D(p,0,w) =D(1m+ ¢, =0, 7+ w), (3.11)

where the z—axis rotations have (mod 27) been omitted to avoid clutter. Now by
equating (3.10) and (3.11), we obtain two equations —p = 7 +w and —w = 7+ ¢,

which give the value of w
w=-rm1—p=7m1—¢ (mod 2m), (3.12)
that makes the rotation operator D(p,J,w) satisfy the “involution” property
D(p, 0,7 —¢) =D(p,0,m —p)~".

Due to this involution of the rotation operator for w = 7 — ¢, the anisotropic
convolution in (3.9) becomes commutative. In fact, using a new operator ® for

such a commutative convolution

(R £)@,9) 2 (0, 9)],_._ = gro(9,9), (3.13)
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we conclude that

~ [ 1@) (P 0.7 =) (@) ds@) = (FoR) (0.0 O

The sufficient condition is proven by inserting w = m— ¢ in D(¢, ¥, w) and verifying
using (3.11) that D(p, 9,7 — p)~ ! = D(—7 + ¢, =9, —¢) = D(p, I, 7™ — ), which

results in a commutative convolution.

Remark 3.1 The proposed convolution can be interpreted as a mapping of anisotropic
convolution defined on SO(3) in (3.2) to S* with the constraint that w varies with
the longitude ¢ given by (3.12). Since, w must be chosen as a function of p, it

cannot be freely controlled at each spatial position.

In summary, we began with (3.8) with w unspecified and have shown that it
must be chosen to be a function of ¢ (and not ¥) according to (3.12) for the overall
rotation operation to be an involution, which yields the desired commutativity. We
now provide a geometric interpretation of this definition and later we present an

example to illustrate the proposed convolution.

3.2.2 Graphical Depiction

In Fig. 3.1 we present a sequence of images to depict the commutative convolution
in action. Fig.3.1a depicts a simplified filter signal indicated by an asymmetric
region on the 2-sphere. The filter, of course, in general has support on the whole 2-
sphere. The first portion of the w rotation (by ) is shown in Fig. 3.1b and may be
associated with flipping or “reversing” the filter (similar to Euclidean convolution).
Fig.3.1c is the w = m — ¢ rotation; Fig.3.1d shows the ¥ rotation and, finally,
Fig. 3.1e shows the filter after the ¢ rotation. Fig.3.2 shows an intrinsic rotation
along axis W = (cos(m + ¢), sin(m + ¢), 0) by a single rotation ¥, which effects
the same rotation of Fig. 3.1b to Fig. 3.1e.
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(b) D(0,0,7) — 7w about z—axis. (c) D(0,0,m — ) — T — p about
z—axis

(d) D(0,9, m—p) — ¥ about y—axis. (e) D(¢, ¥, m—¢) — p about z—axis

Figure 3.1: Action of the commutative convolution kernel. A nominal asymmetrical
support region for the kernel is transformed under the action of operator D(p, ¥, m7—
) according to its component rotations.
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(b) (D(,9, —)f)(&).

Figure 3.2: Single intrinsic rotation version of D(p,d, —y).
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Figure 3.3: Illustration of the commutative convolution. (a) Mars signal is con-
volved with (b) asymmetric spatially concentrated bandlimited filter kernel to ob-
tain (c¢) smoothed (low-pass filtered) Mars signal.
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3.2.3 Illustration of the Proposed Con